

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

PHOENIX: SERVICE ORIENTED ARCHITECTURE FOR
INFORMATION MANAGEMENT - ABSTRACT ARCHITECTURE
DOCUMENT

SEPTEMBER 2011

INTERIM TECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2011-220

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2011-220 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
STEVEN D. FARR JULIE BRICHACEK, Chief
Branch Chief Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEP 2011
2. REPORT TYPE

Interim Technical Report
3. DATES COVERED (From - To)

JAN 2009 – NOV 2010
4. TITLE AND SUBTITLE

PHOENIX: SERVICE ORIENTED ARCHITECTURE FOR
INFORMATION MANAGEMENT - ABSTRACT
ARCHITECTURE DOCUMENT

5a. CONTRACT NUMBER
In House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

J. Bryant (ITT), V. Combs (AFRL), J. Hanna (AFRL), G. Hasseler (ATC-NY),
R. Hillman (AFRL), B. Lipa (ITT), J. Reilly (RRC), C. Vincelette (ITT)

5d. PROJECT NUMBER
S2TS

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/RISE, 525 Brooks Road, Rome, NY 13441-4505
ITT, 775 Daedalian Drive, Rome NY 13440
RRC, Ridge Street, Rome NY 13440
ATC-NY, Thornwood Drive, Ithaca NY

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/Information Directorate
Rome Research Site
26 Electronic Parkway
Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-220

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2011-0022

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This document specifies the architectural design of Phoenix Information Management (IM) Services, also referred to as the IM
Services. The Phoenix IM Services project is not a development effort in the traditional sense. The goal is to define an abstract
concept for an information infrastructure, from which one or more implementations may be developed. The architecture
specifications in this document provide an approach to meeting to needs of information management in future net-centric
environments.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

186

19a. NAME OF RESPONSIBLE PERSON
VAUGHN COMBS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

Table of Contents
Introduction .. 1

Information Management .. 1

Background ... 2

Audience ... 2

Conventions .. 2

Diagram Conventions .. 2

Concepts ... 3

Contexts .. 4

Information ... 4

Information Types ... 5

Events .. 6

Actor & Service Interactions ... 6

Channels .. 7

Control Channels ... 7

Sessions and Session Tracks .. 8

Filters ... 10

Filter Lifecycle ... 10

Filter Chaining ... 11

Information Brokering ... 11

Service Orchestration .. 12

Use Case : Information Submission .. 12

Architecture Specification ... 12

Component Interfaces .. 12

Core ... 13

Information ... 25

Session .. 33

Channel ... 35

Expression ... 50

Frame .. 53

Event ... 55

Service Interfaces .. 59

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
ii

Information Service Interfaces .. 59

Dissemination ... 59

Information Brokering .. 62

Information Type .. 67

Query .. 72

Repository ... 78

Submission .. 83

Utility Service Interfaces ... 84

Client ... 85

Event Notification ... 90

Filter .. 96

Information Discovery... 102

Security ... 104

Service Brokering .. 109

Session Management .. 113

Subscription .. 118

Streams Service Interfaces .. 122

Connection .. 123

Stream Brokering .. 135

Stream Discovery .. 148

Stream Repository .. 152

Reference .. 163

Terms .. 163

Acronyms .. 164

Interface Hierarchies ... 165

Package Structure ... 168

How To... ... 169

How To...Submit Information ... 169

How To...Subscribe to Information ... 172

How To...Store Information .. 176

How To...Query for Information ... 177

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
1

Introduction
This document specifies the architectural design of Phoenix Information Management (IM)
Services, also referred to as the IM Services. The Phoenix IM Services project is not a
development effort in the traditional sense. The goal is to define an abstract concept for an
information infrastructure, from which one or more implementations may be developed. The
architecture specifications in this document provide an approach to meeting the needs of
information management in future net-centric environments.

This document is one of the deliverables for the Phoenix project. The purpose of this document is
to present the results of the requirements analysis and design work that has been completed. An
iterative, object oriented approach has been used to develop the design. The results are
presented here in the form of textual descriptions of the components along with Unified Markup
Language (UML) diagrams. UML diagrams describe in detail the actors, actions, interactions, and
overall services architecture. The following types of UML diagrams are used to depict the
architectural entities: Use Case, Activity, Sequence, and Class.

Information Management
The definition of information management is “a set of intentional activities to maximize the value
of information for achieving the objectives of the enterprise.” The primary purpose of information
management is to achieve effective information sharing among the many applications and users
within an enterprise. In the case of net-centric Command and Control (C2) systems, mission
success is tied to application interoperability, i.e., information sharing among edge-user producer
applications and edge-user consumer applications.

Three best practices have been identified as crucial to future net-centric C2 systems. These best
practices are:

1. Reduce complexity in the edge-user applications by moving it to a shared and supported
infrastructure. The infrastructure will provide common necessary functions, such as
authentication, authorization, access control, prioritization, and demand-driven
information flow. This will free the information provider and consumer applications from
having to manage these functions. The infrastructure will provide universal services, such
as publish, subscribe and query, that are information-neutral.

2. Increase the ability to control the system by decreasing the number of places that must
be modified to implement a change. By moving policy enforcement to the shared
infrastructure, changes in policy can be accomplished without changing any of the edge-
user applications. Similarly, when the operational environment changes, the
infrastructure will be changed to compensate, and the edge-user applications will still
function properly.

3. Package information appropriately for dissemination and management. Effective
management of information requires that it be characterized sufficiently so that it can be
interpreted unambiguously. The characterization is called metadata, while the information
itself is called the payload. The information infrastructure uses the metadata to know how
and where to acquire, store and deliver the payloads.

The goal of the Phoenix project is to define such a shared infrastructure that incorporates these
best practices and thus allows for both rapid application development and independent evolution
of disparate C2 systems.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
2

Background
The Air Force and the Department of Defense (DoD) have been moving towards a network-
centric concept of operations. Interest in Service Oriented Architecture (SOA) based systems will
help move the concept of the Global Information Grid (GIG) closer to realization. SOA based
systems group functionalities around business processes and expose them as packaged,
interoperable services. These services allow applications to exchange data while performing
individual or collaborative business processing. These characteristics make SOA a perfect blend
of rigidness and flexibility for Information Management (IM) operations.

The Air Force Research Laboratory (AFRL) Systems & Information Interoperability Branch (RISE)
main research focus has been Information Management. The branch grew out of the pioneering
work done in this field by the members of the Joint Battlespace Infosphere (JBI) project. In turn,
this project was kicked off by a review and subsequent publication from the Scientific Advisory
Board (SAB) in 1999 stating that the Air Force was weak in the areas of systems integration and
information management. The current effort, called Project Phoenix, will leverage all of the
existing in-house knowledge of IM, along with the expertise of its external research efforts as
well as requirements gathered from customers, to produce a SOA-based IM solution. This
solution will be aligned with the Air Force and DoD’s vision of current and future network-centric
operations.

Audience
This document is intended for two types of readers: those who are implementing the architecture
as specified and those who are looking for an overview of the key architectural concepts.

Implementers will need to be familiar with Unified Markup Language (UML), have installed the
Visual Paradigm for UML Viewer Edition, and have a copy of the Phoenix.vpp Visual Paradigm
project file. Visual Paradigm for UML can be downloaded from http://www.visual-paradigm.com.

For those who are interested in an overview of the key architectural concepts, this document is
all that is required.

Conventions
This document provides both a literal and conceptual design of the Phoenix architecture. The
literal architecture is a technical specification defined using UML. The conceptual architecture is
a less formal description using plain language and diagrams to provide design concepts and
objectives.

Diagram Conventions

Throughout this document there are a number of non-UML diagrams that are used to illustrate
high-level concepts. Samples of these diagrams are shown below along with usage information.

The figure below shows a sample communication between Phoenix entities via channels.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
3

Entity Meaning Color

Producer Produces information.

Service Manipulates information.

Consumer Consumes information.

Actor A generic term that can mean producer, consumer, or service.

Inquisitor A type of consumer that queries a service to get information.

The figure below is a sample diagram showing labeled information flow.

Concepts
This section specifies the key concepts in the Phoenix architecture:

• Contexts

• Information

• Information Types

• Events

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
4

• Actor & Service Interactions

• Channels

• Control Channels

• Sessions and Session Tracks

• Filters

• Information Brokering

• Service Orchestration

Contexts
The context is one of the basic constructs within the Phoenix architecture. Contexts are used by
Phoenix services and components for storing state and configuration settings. Each context
contains a set of key-value pairs. Helper methods are defined within many contexts that require
specific keys with specific types of values. For example the Service Context interface defines the
set and retrieval methods for a key whose value represents the current service status. This key
requires values to be members of the Service Status enumeration. Contexts are not limited to
storing predefined keys and values however. The Base Context interface, which is the parent
interface for all contexts, was designed with idea that it could support setting and retrieving
values of any type for any specific key defined by any implementation of the architecture.
Contexts are meant to be easily extensible to accommodate additional attributes based on
operational requirements within any implementation-level design.

Since contexts are used to store configuration settings for Phoenix entities, they need to support
a mechanism for notifying their parent entities, or any other system construct, when a value is
changed at runtime. This concept is realized by the definition and application of the Base
Attribute Update Callback. When one of these callbacks is applied to a specific key-value pair
within a context, any entity that has expressed an interest in being notified when that value
changes is notified whenever a change occurs. The most obvious use case for this capability is
controlling the configuration setting updates for Quality of Service (QoS) managed information
channels. In this case the callback would be the mechanism that alerts the channel that one of
its settings has been modified, thus kicking off some processing that effects a change in the way
the channel is performing its job.

Contexts are conceptualized to be unique to their context container. This means that any entity
in an implementation of the Phoenix Architecture that implements the Context Container
interface or one of its sub-interfaces is expected to contain one and only one context instance
that is unique to the container. This is done to ensure that different instances of the same
implementation classes end up with unique contexts that describe them and their respective
state.

Information
Information, the central concept behind IM, is the currency that flows between and among
actors. A complete unit of information consists of:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
5

• An information type identifier
o Tags the payload with a known and defined information structure.
o May or may not be optional depending on how designers wish to implement the

ability to support untyped information.
• Metadata (the description of the payload)

o May or may not be a subset of the payload.
o May duplicate some or the entire payload.
o Is used for Brokering.
o Is used for Storage and Retrieval.
o May be used by filters.

• A payload (the actual data being managed)
o May consist of known or unknown content.
o May or may not be used by an actor.

• An InformationContext
o Contains attributes that provide additional insights that further describe the

information, including any implementation specific attributes.

Two simple examples offer different, yet consistent views of information. The first example
consists of an information type that contains XML as the payload with certain fields promoted to
metadata. The second consists of an information type that contains a binary (image file) payload
and XML metadata that describes that image.

Example 1:

An Air Tasking Order (ATO) fragment for a specific reconnaissance mission may be the data of
interest. The payload may contain the ATO fragment in XML format, the metadata may contain
the mission number and the information type identifier may be mil.af.ato.

Example 2:

A sensor may have captured an image of interest. The information type identifier may be
sensor.mil, the payload would be the image itself, and the metadata would describe the image,
and possibly, its contents.

Information may be represented in such a way that it contains only pointers to one or both the
payload or metadata. Information within the Phoenix architecture is defined by the Information
interface.

The Phoenix architecture does not define whether or not instances of information are immutable.
This decision is left up to the implementation designers and developers to insure that the
implementations of the IM Services are optimally tailored to meet the operational requirements
of the stakeholders and their individual Communities of Interest (COIs).

Information Types
Information types are used to uniquely identify classes of information. An information type
consists of:

• A unique identifier.

• A payload schema.

• A metadata schema.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
6

• Other implementation specific attributes.

The unique identifier for an information type is used by the IM Services to identify what type of
information a particular instance represents. This is useful for operations such as metadata or
payload validation. Information type identifiers may be implemented such that they represent
some kind of implementation specific information type hierarchy. For example, information type
identifiers could be implemented to follow Java package standards where underlying packages
are extensions of parent packages.

The payload schema for an information type describes the structure of the information being
managed. Each individual payload instance should conform to its corresponding information
type’s payload schema. For example, an XML payload for type ATO should conform to the
payload XML Schema Document (XSD) defined by the ATO information type.

Metadata schemas are similar to the payload schemas. They define the structure of the metadata
for the information being managed, i.e. the structure for the metadata describing the payload.
Each individual metadata instance should conform to its corresponding information type’s
metadata schema. For example an XML metadata instance for type ATO should conform to the
metadata XSD defined by the ATO information type.

It is important to note that structure of the payload and metadata need not be expressed by XML
schema documents (XSD). XML and XSD were chosen as examples in an attempt to explain an
abstract idea using a common, well-known, and understood representation.

Additional attributes for information types may be defined by implementations of the
architecture. This allows implementation developers to associate data or constructs of any kind
with information types. For example an implementation of the architecture may define unique
metadata generation routines for each information type.

Information types are managed by the Information Type Management Service.

Events
The Phoenix architecture defines events as non-managed data items that facilitate interactions
between actors. The key difference between events and information is that the event hierarchy
and structures must be defined by the implementation at design time while information types
can be defined by any actor with sufficient privileges at runtime.

Some simple examples of events are messages used for confirmation of information submission
and delivery, notification of which actors are interested in certain types of information, control
messages used to facilitate the creation and destruction of channels, and just about any other
interaction or status message you can think of. Events may be managed in some capacity, but
they are not managed in the same ways that information instances are. Events are meant to
facilitate the transportation of service level data items that are not supposed to be visible to
actors. To facilitate event communications the Phoenix architecture defines specific channel
interfaces for events.

Actor & Service Interactions
Actors communicate with services via channels. Data to be moved through and processed by the
services is transported from the actor to the service by byte, event, frame, and information

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
7

channels. Service methods are invoked through control channels. Invocations of service methods
are monitored at the service level by the use of actor sessions and session tracks.

Channels

Channels are the central construct for the Phoenix architecture because they facilitate all
interactions between all Phoenix actors.

Channel implementations are organized by application and transport protocols. The specific
protocols are defined by the Phoenix implementations: for example application protocols may be
defined as information, byte, event, and frame while the transport protocols may be Transport
Control Protocol (TCP) and Universal Data Protocol (UDP). A specific channel used by a Phoenix
actor is a combination of an application protocol and a transport protocol. For example, based on
the aforementioned protocols, a channel for an actor may be information:tcp which translates to
an information channel that uses TCP as its transport.

Channels are defined within the Phoenix architecture by the BaseChannel interface. The control
mechanisms for creating and maintaining channel instances are defined by the
BaseChannelService interface. The architecture also defines several standard flavors of channels
including byte, event, frame, and information. More varieties of channels are allowed due to the
extensibility of the architecture, these were defined due to the associated objects being central
components of the architecture (events are tied to the Event Notification Service, information is
tied to several services, etc.).

Channel Lifecycle

Channels are created by the service or actor that will utilize them. There is a service level
method for configuring an actor output channel. This method exists to allow an actor the ability
to ask a service to configure a channel for the actor to use to communicate with that service. For
example, if an actor calls this method with a channel context the service may set the host
address, host port, and/or the application and transport protocols for the actor's channel to use.

The lifecycle of a channel is similar to that of a Java socket: create, open, utilize, close. The main
difference between a Java socket and a Phoenix channel is that a channel may be suspended and
resumed without being physically closed. The creating actor is responsible for maintaining the
lifecycle of the channel.

Control Channels

Control channels are abstract notions that are manifested implicitly by each call upon a service
interface. As such, control channels are not physical constructs within the IMS but instead they
are embodied by the architecture’s use of the connector-stub model for service interface
invocations. These connector and stub constructs supply adequate physical components for
possible application of security or Quality of Service (QoS) policies.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
8

Figure 1 - Connectors and Stubs

The stub represents the actor side of a connection between the service and an actor. Any service
method exposed by the connector must also be specified by the stub to allow a connection
between the actor and the service. The connector represents the service side of a connection
between the service and an actor. The service methods that an implementer wishes to expose to
an actor are specified within the connector.

Control stubs for services may be obtained either through static configuration or some runtime
mechanism specific to the connector-stub implementation (for example RMI would require the
use of an RMI registry and lookups).

Sessions and Session Tracks

A session is a sustained interaction between an actor and a set of other actors. A session may
represent a one-to-one or a one-to-many relationship. Sessions are used to store configuration
data about an actor and what actions they are undertaking within the Phoenix information space.
Such configuration data can include, but is not limited to:

• The set of information channels (input and output) associated with this actor,

• The set of filters this actor is allowed to utilize,

• Any specific security policy restrictions or rights that apply to this actor only,

• Any other configuration data deemed to be of some use or value that should be
associated with a session and stored for later retrieval.

A session track is an ordered collection of session identifiers showing the sequence of actors
involved in a transaction. Session tracks can be used to:

• Show service usage.

• Support security and QoS policy decisions.

• Determine the originator of a session.

It is important to understand the difference between a session and a session track. A session is
used to monitor actors' interactions with other actors by maintaining state that describes what
operations an actor is performing. A session track is a construct that holds only session
identifiers and is used by all actors to enable policy decisions during control method invocations.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
9

Figure 2 shows an actor (A) as the originator of two session tracks (ST^I, ST^II), both using the
same session identifier (A^SID). Each Phoenix information service (SS, IBS) that has one of its
methods invoked via a control channel receives one of these session tracks and annotates it with
its own session identifier (IBS^SID, SS^SID). These services also invoke methods on the
Session Management Service (SMS) to update the associated session context as applicable,
perhaps with descriptions of information being submitted or subscriptions registered. These
services also communicate with the Authorization Service (AS) as required in order to authorize
the method invocations made by the actor.

Figure 2 - Sessions & Session Tracks

Diagram Key

A The Actor who creates a session and begins invocation chains using session track instances.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
10

AS The Authorization Service.

IBS The Information Brokering Service.

SID A Session Identifier.

SMS The Session Management Service.

SS The Submission Service.

ST A Session Track.

Sessions and session tracks are defined in the architecture by the SessionContext and
SessionTrack interfaces, respectively.

Filters
The Phoenix architecture defines an adaptable data filtering capability that may be applied to any
component within the architecture. The most obvious use for filters is any interaction between a
pair of actors but filters may also be applied to inter-service operations and components such as
subscriptions. For example a subscription may have multiple consumers and security may dictate
a key-word filter be applied to all outgoing information. In this case it may be optimal for the
information filtering to be done within the Information Brokering Service instead of within the
Dissemination Service.

The architecture provides an interface for a filtration chain mechanism dubbed Filter Chain. This
entity, whose instances are constructed by the factory method available as part of the Filter
Management Service, embodies a chain of filters that are be invoked in the order they are linked
and the operations that each filter will be performing including each filter’s required input and
expected output. The Filter interface provides a generic filtration method that takes an Object as
its parameter and returns the same. This allows the Phoenix filters their aforementioned
flexibility. This transparency comes with a drawback however; each specific filter implementation
must know a priori exactly what type of Object it is receiving to perform filtering operations over.
This transparency also means that the Filter Chain entities must know exactly what is being
returned by each specific filter in order to ensure that the inputs and outputs of chained filters
match up exactly.

Filters are defined in the architecture by the Filter interface.

Filter Lifecycle

It is envisioned by the Phoenix Design Team that all filters are to be registered with at least one
Filter Management Service (FMS) shortly after creation and before they can be utilized. This is
enforced by the definition of methods within both the Filter and Filter Chain interfaces that are
only visible at the package level, thereby guaranteeing that any code external to the Phoenix
filter package cannot invoke them. Filters are able to be created by any actor within the Phoenix
environment, but only those actors who can communicate with the FMS may actually utilize them
for filtration operations. Any single filter’s lifecycle can be summed up by the following steps:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
11

1. Creation,

2. Registration,

3. Utilization,

4. De-registration

5. Destruction.

At creation time a specific filter implementation class is instantiated in some actor’s address
space. The filter is then registered with one or more FMS’s and utilized by any actors who, based
on any applicable policies, have the necessary privileges. When the filter is no longer pertinent,
or some actor with the necessary privileges deems it necessary, the filter is dropped from the
FMS’s registry and destroyed.

Filter Chaining

Filters may be chained together into a Filter Chain (FC), a concept that is embodied within the
Phoenix architecture by an interface of the same name. A FC is the entity that an actor invokes
the filtration method on to enact a filter operation. This ability is provided by exposing the same
generic filtration method signature resident in all filters at the FC interface. Once a FC’s filter
method has been invoked, the first filter performs its coded operations and then returns its result
to the FC. The FC then iterates through each of the subsequent filters in the chain, if any are
designated, and returns the final result to the invoking actor. Filter Chain instances are created
by the FMS. However, the FMS does not maintain the FC instances. This is the responsibility of
the requisitioning actor. However the FMS does carry the burden of being the sanity check point
for filter chaining. When FC’s are created by the FMS, the service checks each step in the
requested filter chain to ensure that the next filter’s input type matches the previous filter’s
output type. If a mismatch is found, it is identified and a detailed exception is thrown by the
service back to the requisitioning actor. This operation has been designated as a responsibility of
the FMS in order to avoid the regurgitation of heavy logic such as this within the address space
of every Phoenix actor that wishes to create a filter chain. By placing this logic and processing in
a central (or distributed) service-oriented point, the Phoenix architecture provides an optimized,
cohesive, and discoverable solution to the data filtration problem plaguing today’s information
highways.

Information Brokering
Information brokering is defined as matching information requests to known instances of
information. The Phoenix Architecture defines an interface for an Information Brokering Service,
but does not place any specific limitations upon or attempt to constrain exactly how this service
is implemented.

Subscription is the term used to describe an actor's request for information. Subscriptions may
have one or more expressions associated with them. Subscription expressions define filter
parameters for selecting information that is of interest to the subscription's consumers and may
be as simple as a type identifier or as complex as a regular expression or and XQuery statement.
Subscriptions and expressions are defined using the context interfaces located within the
'subscription' and 'expression' packages, respectively.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12

Such open specification of the Information Brokering Service in the Phoenix Architecture allows
for an infinite number of possible service implementations, thus leaving the way ahead clear for
new and emerging brokering technologies such as bulk or priority-based expression processing.

Service Orchestration
Service orchestration is defined by the Design Team to be the chaining or linking of two or more
service instances to accomplish some specific task for one or more actors. Such chains can be
statically or dynamically constructed based on specific implementation requirements. The
decision to support one or both of these is made at implementation design time. The Phoenix
service’s dependence upon flexible structures such as the context and channel interfaces
provides implementation designers with a measure of much-needed flexibility when making such
design-time decisions.

The Phoenix Architecture does not define any interfaces for linking services in this way. By
leaving this as extensible as possible the archtiecture allows implementors to design their own
solutions customized for their specific requirements.

Use Case : Information Submission

One existing use case of service orchestration is the act of submitting information to the Phoenix
services. This is accomplished by interacting with and transmitting information instances to the
Submission Service. Once this service receives an information instance it must decide based on
local implementation logic and policy if and which Information Brokering and Repository Services
the information is going to be forwarded to. These service chains, Submission-to-Information
Brokering and Submission-to-Repository, are fundamental examples of simple service
orchestrations.

Architecture Specification

This section specifies the Phoenix Architecture by means of the interfaces between components.
At this level of the design, it is not necessary to define the internal workings of the components.
The actual functions, variables and operations will be determined by the implementation
designers, when an instance of the Phoenix concept is built.

This Phoenix architecture specification is divided into two types of interfaces: component and
service. The component and service interfaces have been sub-divided into a total of twenty units
by functionality. For example, the component interfaces in the “expression” group all provide
support for expression definition and processing functions.

For each interface, the specification includes a description of its purpose within the Phoenix
architecture. Where appropriate, the specification also includes the object’s attributes, its public
operations (also called methods), how the interface is used, and a list of related UML diagrams.
An operation is defined by this documentation as any action that is performed upon a set of
targets by a set of actors.

Component Interfaces

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13

Component interfaces provide functional pieces that may be used by one or more of the services.
The component interfaces have been sub-divided into functional groups, ordered by overall
importance to the architecture as a whole:

• Core

• Information

• Session

• Channel

• Expression

• Frame

• Event

• Stream

Core

The core group contains the interfaces, contexts, and supporting components that provide the
base functionality and meaning behind the Phoenix IM services. The core interfaces, listed
alphabetically, are:

• ActivationCallback

• BaseAttributeUpdateCallback

• BaseContext

• BasePersistentService

• BaseService

• BaseServiceConnector

• BaseServiceStub

• ConnectionContext

• ConnectorContext

• ContextContainer

• ServiceContext

• ServiceDescriptorContext

• ServiceStatus

• StubContext

ActivationCallback

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
14

The Activation Callback is intended to provide actors a way to be asynchronously notified when
the assigned stub's activation is complete and it is ready for use. Stubs may not be ready exactly
when the actor requests them due to network latencies or other dependencies. This concept was
designed explicitly to provide a solution to the service start-up circular dependency problem,
where service A depends on Service B and Service B depends on Service A.

Public Operations

onActivation() : void

This method is invoked by the assigned stub after stub activation has been completed.

BaseAttributeUpdateCallback

This interface accommodates the case where one or more of the values stored in a context has
been changed and said change needs to ripple down to interested parties.

Public Operations

getAttributesOfInterest() : List<String>

Retrieves any context attribute keys that the actor is interested in when updated.
This method returns the registered context attribute keys of interest

getCallbackId() : String

Retrieves the unique ID associated with this callback.
This method returns the unique callback ID.

setAttributesOfInterest(attributesOfInterest : List<String>) : void

Sets any context attribute keys that the actor is interested in when updated.

Arguments:

• attributesOfInterest - The registered context attribute keys of interest

update(updatedAttributes : Map<String, Object>) : void

This method is called to notify the interested party that context attributes of registered
interest have been updated. Note that an null entry for a specific key value in updated
attributes is associated with a context attribute that has been REMOVED.

Arguments:

• updatedAttributes - The attribute value changes provided by notifying context.

BaseContext

This entity is the super class for all Contexts within the architecture. It is primarily an internal
data structure that contains key-value pairs for holding data that describes a Context. It also
provides several "getter" and "setter" methods for these keys and values.

BaseContext has two required attributes that lay the foundation for all other Context sub-
interfacees: contextId, and attributes.

1. The contextId is the unique identifier for the Context.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
15

2. attributes is the Map of attribute names and their associated values.

Public Operations

addUpdateCallback(updateCallback : BaseAttributeUpdateCallback) : void

This method allows for the addition of a context callback. The context implementation
itself will then, based on the registered attributes of interest contained within the
callback, invoke the callback providing the attribute changes.

Arguments:

• updateCallback - The callback used to notify interested actor of changes in
context attributes.

destroy() : void

Deletes any references to this object, and clears out any other internal data that the
context owns.

getAllAttributes() : Map<String, Object>

This method returns all the attributes that are stored for this instance of the Context.
This method returns a Map that contains the key-value pairs for all attributes.

getAttribute(attributeName : String) : Object

This method returns an Object the represents the value for the given attributeName key
name.

Arguments:

• attributeName - The name of the attribute that you want returned from the Map.
This is the key in the Map.

getAttributes(attributeNames : List<String>) : Map<String, Object>

This method returns a Map that has the keys and values filled in for the given
attributeNames key names.

Arguments:

• attributeNames - A list of names (key values) of the attributes to be returned.

getContextId() : String

This method returns the unique identifier associated with this instance of specified
Context.

getName() : String

Retrieve the name for this context. This is an identifier that may be set by applications
and used for such things as policy enforcement.

isForceDeepCopy() : boolean

This method returns true if a copy operation invoked on this context is forced to return a
deep copy of the context and false if the decision whether to deep copy the context is left
up to the copier.

isSanitized() : boolean

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
16

This method returns true if the context has been sanitized at least once. If not it returns
false.

removeAttribute(attributeName : String) : void

Remove a specific attribute from this Context's attribute Map.

Arguments:

• attributeName - The name of the attribute to be removed.

removeAttributes(attributeNames : List<String>) : void

Remove the supplied attributes from the attributes Map.

Arguments:

• attributeNames - The names of the attributes to be removed.

removeUpdateCallback(callbackId : String) : void

This method removes a registered context callback.

Arguments:

• callbackId - The unique identifier associated with the registered callback that is to
be removed.

sanitize() : void

This method removes all attribute values that should not be forwarded to the next actor.
setAttribute(attributeName : String, attributeValue : Object) : void

This method takes a key-value pair and sets it within the Map maintained by the Context.

Arguments:

• attributeName - The name of the attribute that you want to add.

• attributeValue - The value for the attribute.

setAttributes(attributes : Map<String, Object>) : void

This method takes a Map of key-value pairs and sets each one within the Map maintained
by the Context.

Arguments:

• attributes - The Map of attributes and their new values.

setForceDeepCopy(forceDeepCopy : boolean) : void

Set the flag telling whether or not copying this context forces a deep copy operation.

Arguments:

• forceDeepCopy - True if a copy operation invoked on this context is forced to
return a deep copy of the context and false if the decision whether to deep copy
the context is left up to the copier.

setName(name : String) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
17

Set the identifier to be used by applications for things such as policy enforcement.

Arguments:

• name - The identifier to be used by applications for things such as policy
enforcement.

BasePersistentService

This interface provides mechanisms for storing and restoring service state in the event of service
shutdown and restart.

Public Operations

load() : void

Load a stored service state from some persistent data store.

Raised Exceptions:

• Exception

store() : void

Store the service state in some persistent data store.

Raised Exceptions:

• Exception

BaseService

This interface defines the minimum set of methods required to identify a specific entity as a
Phoenix service. It includes a set of generic service maintenance functions that provide a basis
for controlling and administering the IM Services at runtime.

Public Operations

getStatus() : ServiceStatus

Retrieve the identifier that signifies the current state of the associated service. The
possible values for this identifier are listed in the ServiceStatus enumeration.

Raised Exceptions:

• Exception

resume() : void

Resume normal service operations.

Raised Exceptions:

• Exception

start() : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
18

This method is used to start a service once it has been implemented and deployed to
some platform.

Raised Exceptions:

• Exception

stop() : void

This method is used to stop a service after it has already been started.

Raised Exceptions:

• Exception

suspend() : void

Temporarily suspend service operations.

Raised Exceptions:

• Exception

Protected Operations

getServiceContext() : ServiceContext

Retrieve the context object that contains the current state of the associated service as
well as its description.

Raised Exceptions:

• Exception

BaseServiceConnector

A base interface defining the minimal methods required to be considered a service connector.

Public Operations

activate() : void

This method is called by the parent service to activate the connector so it is ready for
stubs to hit.

Raised Exceptions:

• Exception

deactivate() : void

This method de-activates the connector, which suspends all invocations from the
connector to the actual service. Note that de-activating a connector does NOT destroy it.

Raised Exceptions:

• Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
19

getConnectorContext() : ConnectorContext

This method returns the connector context that is associated with the service.

Raised Exceptions:

• Exception

BaseServiceStub

All services are interacted with via the connector and stub model. A well known example of this
model is the Remote Method Invocation (RMI) model. The connector construct represents the
service side of a physical connection between the service and an actor. The stub is the actor side
of the same physical connection. All methods exposed through the connector are to be
implemented within the stub as well. The stub is the physical construct that the actor invokes
methods upon. These method invocations are forwarded to the connector by the stub and
onward through the connector to the actual service itself. All return values for method
invocations follow a reciprocal path through the connector and stub back to the actor.

Public Operations

activate(async : boolean) : void

Activate this stub locally.

Arguments:

• async - This parameter tells the stub if the encompassing activation call is
synchronous or asynchronous.

Raised Exceptions:

• Exception

deactivate() : void

De-activates the stub which means that all invocations from stub to its associated
connector are suspended. NOTE that de-activating a stub does NOT destroy it.

Raised Exceptions:

• Exception

getStubContext() : StubContext

This method returns the current instance of the StubContext.

Raised Exceptions:

• Exception

isActivated() : boolean

This method returns true if its current state is ACTIVATED, and false otherwise.

Raised Exceptions:

• Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
20

registerActivationCallback(callback : ActivationCallback) : void

This method sets the ActivationCallback for the stub.

Arguments:

• callback - The callback to be fired when the stub is activated.

Raised Exceptions:

• Exception

ConnectionContext

This context describes a control channel connection between an actor and a service. It contains
the four minimally necessary items for constructing a physical connection between two nodes
including the host address, host port, connector identifier, and protocol used for the connection.

Public Operations

getConnectorAddress() : String

Retrieve the address of the registry used by the connector.
getConnectorName() : String

Retrieve the name of the connector. For use by technologies such as RMI that require a
unique identifier.

getConnectorPort() : int

Retrieve the port used by the connector and stub.
getProtocol() : String

Retrieve the protocol being used by the parent control channel.
setConnectorAddress(connectorAddess : String) : void

Set the address of the registry used by the connector.

Arguments:

• connectorAddess - The address of the registry used by the connector.

setConnectorName(connectorName : String) : void

Set the name of the connector. For use by technologies such as RMI that require a unique
identifier.

Arguments:

• connectorName - The name of the connector. For use by technologies such as RMI
that require a unique identifier.

setConnectorPort(connectorPort : int) : void

Set the port used by the connector and stub.

Arguments:

• connectorPort - The port used by the connector and stub.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
21

setProtocol(protocol : String) : void

Set the protocol being used by the parent control channel.

Arguments:

• protocol - The protocol being used by the parent control channel.

ConnectorContext

This Context maintains and describes the state of a connector owned by a service. It contains
two required attributes: svcCtx and svcRef.

1. The svcCtx is a copy of the Service Context that describes the service associated with the
connector.

2. The svcRef is a reference or pointer to the actual service instance that this connector is
associated with.

Public Operations

getService() : BaseService

This method returns the actual service instance that the connector is holding.
getServiceContext() : ServiceContext

This method returns the copy of the service context that describes the service that this
connector is connected to.

setService(service : BaseService) : void

Set the reference to the associated service for this Context's connector.

Arguments:

• service - The reference to the associated service for this Context's connector.

ContextContainer

An interface defining a container for a single context.

Public Operations

getContext() : BaseContext

Retrieve the context stored within this container.
setContext(ctx : BaseContext) : void

Set the context to be stored by this container.

Arguments:

• ctx - The context to be stored by this container.

updateContext(attributesAndValues : Map<String, Object>) : void

Updates the attributes and values stored by the context within this container.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
22

Arguments:

• attributesAndValues - The new attributes and their respective values.

ServiceContext

This Context maintains a description of the service, its capabilities, and any state data being
maintained by the service.

Public Operations

getFunctionalDescription() : Map<String, Object>

Retrieve the functional description of the service. This description may include details
such as: what operations the service supports, what information types it may perform
operations upon, etc. The exact contents of this description are left up to the
implementation designers to determine.

getOperationalDescription() : Map<String, Object>

Retrieve the operational description of the service. This description may contain details
such as: what types of information the service is currently operating upon, performance
metrics, etc. The exact contents of this description are left up to the implementation
designers to determine.

getServiceDescriptor() : ServiceDescriptorContext

Retrieve the descriptor for this service.
getServiceName() : String

Retrieve the human readable name for the associated service.
getServiceStatus() : ServiceStatus

Retrieve the identifier for the current status of the described service. Possible values for
this identifier are defined in the ServiceStatus enumeration.

getServiceTypes() : List<String>

Retrieve the listing of identifiers that signal what types of functionality the described
service supports. The values for this field are implementation specific.

setFunctionalDescription(desc : Map<String, Object>) : void

Set the functional description for the service that this context describes.

Arguments:

• desc - The functional description of the service that this context describes.

setOperationalDescription(desc : Map<String, Object>) : void

Set the operational description of the service that this context describes.

Arguments:

• desc - The operational description of the service that this context describes.

setServiceDescriptor(context : ServiceDescriptorContext) : void

Set the descriptor for this service.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
23

Arguments:

• context - The descriptor for this service.

setServiceName(serviceName : String) : void

Set the human-readable name for the service that this context describes.

Arguments:

• serviceName - The human-readable name for the service that this context
describes.

setServiceStatus(status : ServiceStatus) : void

Set the status flag for the service that this context describes.

Arguments:

• status - The current status of the service that this context describes.

setServiceTypes(types : List<String>) : void

Set the list of identifiers stating what service interfaces the service that this context
describes implements.

Arguments:

• types - The list of identifiers for the service interfaces that the service that this
context describes implements. Possible values are listed in the ServiceType
enumeration.

ServiceDescriptorContext

This context is used to describe a service. The contents of this context is defined in part by the
helper methods enumerated within its interface and in full by the set of schemas stored by the
Service Brokering Service. These schemas describe the searchable elements and attributes of
service descriptions.

Public Operations

getServiceName() : String

Retrieve the service name.
getServiceTypes() : List<String>

Retrieve the list of service types that identifies the Phoenix service interfaces that the
described service implements.

listControlChannels() : List<BaseServiceStubInterface>

Retrieve the list of stubs that embody the control channels for this service.
listControlChannelTypes() : List<String>

Retrieve a list of the control channel types (I.E. RMI, PIC, etc.) from this descriptor.
listSupportedExpressionTypes() : List<String>

Retrieve the list of expression types supported by this service, if any.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
24

listSupportedInformationTypeNames() : List<String>

Retrieve the list of information type names supported by this service, if any.

ServiceStatus

This enumeration contains the possible states that a Phoenix service can be in at any given time.

Public Fields

AVAILABLE

The service has been started and is ready for use by other actors.
STARTED

The service has been started and is ready for use by other actors.
STARTING

The service is currently in the process of initializing its internal components.
STOPPED

The service has been stopped. The service may be restarted.
STOPPING

The service is currently in the process of shutting down its internal components and is no
longer able to be used by other actors.

SUSPENDED

Reflects a service whose normal operations have been temporarily suspended.
UNAVAILABLE

The service has entered an error state that has made it unavailable for use by other
actors.

StubContext

Maintains and describes the state of a stub owned by an actor. The Stub Context contains a copy
of the ServiceContext, with the attribute name svcCtx, that describes the associated service. This
copy of the ServiceContext may be filtered for data that actors may not need to know or that the
associated service does not want actors to know about.

Public Operations

getServiceContext() : ServiceContext

This is a (possibly modified) copy of the context for the service the stub is associated
with. This copy is maintained by the StubContext so that a stub may be able to
accurately describe its associated service's capabilities or other data about the service
that may be important to share with the stub.

setServiceContext(ctx : ServiceContext) : void

Set the ServiceContext for the stub's associated service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
25

• ctx - The context for the stub's associated service.

Information

The information group provides the interfaces, contexts, and supporting components that define
the information to be managed. This group also contains the context that describes the services
performing the management operations. The information interfaces are:

• ActionContext

• ConfirmationType

• Information

• InformationAction

• InformationChannel

• InformationChannelContext

• InformationContext

• InformationInputChannel

• InformationOutputChannel

• InformationServiceContext

ActionContext

The Action Context is used to describe the actions that can be invoked on information of specific
types. This Context has two required attributes: infoTypeActions and infoTypeNames. The
infoTypeActions attribute is a listing of information actions that may be invoked on information.
The entries within this list correlate to the entries within the list of infoTypeNames. The
infoTypeNames attribute is a listing of information type identifiers that defines what types the
respective information actions are being performed upon.

Public Operations

getInfoTypeActions() : List<InformationAction>

This method returns all the information actions that may be invoked on information that
corresponds to the Type Names list.

getInfoTypeNames() : List<String>

This method returns a list of information type name identifiers that defines what types
the respective information Type Actions are being performed upon.

setInfoTypeActions(actions : List<InformationAction>) : void

Set the list of actions being performed upon information.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
26

• actions - The list of actions being performed upon information.

setInfoTypeNames(typeNames : List<String>) : void

Set the information type names for this context.

Arguments:

• typeNames - The list of information type names.

ConfirmationType

This enumeration contains the possible types of information delivery receipts that can be
requested by producers of managed information.

Public Fields

CONSUMER_ACK

This signals that the producer of the managed information wants a delivery receipt
stating that the registered consumers for the information have indeed received it.

NONE

This signals the Submission Service that the producer wants to blindly submit information
to be managed without worrying about whether or not the information was submitted
successfully.

SUBMISSION_ACK

This signals the Submission Service that the producer wants confirmation of receipt of
each instance of information as it is received by the Submission Service.

SUBMISSION_NACK

This signals the Submission Service that the producer wants to be notified when one of
their information submission attempts fails. The meaning of "submission failure" is left to
the implementation designers to define.

Information

This interface is used to wrap the data being managed as information. Instances of this interface
must understand the following attributes: metadata, payload, infoTypeName, and
informationContext.

1. The metadata is the structured data that describes the actual information being
managed. This may be XML, some other markup language, a specific set of bytes, or a
collection of attribute-value pairs. The makeup of the context really depends upon the
particular implementation of the abstract architecture. The structure and format of the
metadata can be different for different types of Information.

2. The payload is the actual information being managed.

3. The infoTypeName is the type identifier for this instance of managed information.

4. The informationContext is the Context that provides additional characterization for this
piece of information.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
27

Information may also be degraded, meaning that it has been subject to some form of loss of
content during its lifecycle. Once information has been degraded, it can never be upgraded. The
degradation flag serves as an indicator to Phoenix actors that what they received is not the
pristine information instance, but a degraded copy of the original instance. The Phoenix
architecture does not prevent said actor from attempting to retrieve the pristine information
instance, this is the job of implementation level security components such as authorization
policies. Information degradation is thought to be embodied by many different functions, which is
why the Information Context contains an integer variable designating the acceptable degradation
modes available for a specific instance of information.

Public Operations

getInformationContext() : InformationContext

Retrieve the Context providing additional characterization for this piece of information.
getMetadata() : Object

Retrieve the metadata for this instance of managed data. If none exists for this instance,
then the payload must not be missing as well and this field should contain some kind of
identifier or pointer that enables the retrieval of this instance's metadata.

getPayload() : Object

Retrieve the raw data that is being managed by the IM Services. If none exists for this
instance then the metadata must not be missing as well and this field should contain
some kind of identifier or pointer that enables the retrieval of this instance's payload.

getTypeName() : String

Retrieve the type name for this information instance. This type identifier maps to an
information type definition.

isDegraded() : boolean

Indicate whether the information has been degraded from its original form. Degradation
refers to any filtering or other modification that that irreversibly reduces the quality of
information: for instance, lossy compression applied to reduce information size.
Degradation may be necessary for quality-of-service reasons.

markAsDegraded() : void

Set the flag indicating that the information has been degraded. Degradation refers to any
filtering or other modification that that irreversibly reduces the quality of information: for
instance, lossy compression applied to reduce information size. Degradation may be
necessary for quality-of-service reasons. Because degradation is irreversible, once this
method is called, the information is irrevocably marked as degraded. There is no way to
"unmark" information as degraded. For ease of code maintainability, it is strongly
recommended to call this function after every modification that degrades information.

setMetadata(metadata : Object) : void

Set the metadata for this instance of managed data.

Arguments:

• metadata - The metadata for this instance of managed data.

setPayload(payload : Object) : void

Set the payload for this instance of managed data.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
28

Arguments:

• payload - The payload for this instance of managed data.

setTypeName(typeName : String) : void

Set the type name for this information instance. This type identifier maps to an
information type definition.

Arguments:

• typeName - The type name for the information instance.

InformationAction

This enumeration contains the possible actions that me be implemented upon instances of
managed information.

Public Fields

ARCHIVE

Store the information instance in a high-capacity, high-latency data store for later
retrieval.

BROKER

Broker the information for delivery to interested consumers.
DISSEMINATE

Deliver the information to interested consumers.
PERSIST

Store the information instance in a low-capacity, low-latency data store for later retrieval.
QUERY

Query for stored information.
SUBMIT

Submit information to be managed.
SUBSCRIBE

Register the intent to receive information as it is brokered.

InformationChannel

An interface for information channels.

Public Operations

getInformationChannelContext() : InformationChannelContext

Retrieve the information channel specific context.
isTyped() : boolean

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
29

Check if this channel is typed or not. A typed information channel sends and receives
information of specified information types. An un-typed information channel can send and
receive information of any information type.

listInformationTypeNames() : List<String>

Retrieve the list of information type names that this channel supports. Any information
not of one of these types will cause an exception to be raised.

InformationChannelContext

A channel context specific to typed information channels.

Public Operations

listInformationTypeNames() : List<String>

Retrieve the list of information types that this channel supports.
setInformationTypeNames(typeNames : List<String>) : void

Set the list of information types that this channel supports.

Arguments:

• typeNames - The list of information types that this channel supports.

InformationContext

This Context provides a container for holding additional auxiliary data describing or
characterizing a piece of information being managed by the Phoenix IM Services. A piece of
information may or may not contain an InformationContext. Special flags for information include
the: persistenceFlag, brokeringFlag, receiptRequestFlag, and degradableFlag.

1. The persistenceFlag, if provided, signifies that the information should be persisted. In the
Phoenix architecture this would be used by the Submission Service, telling it to interact
with one or more Repository Services.

2. The brokeringFlag, if provided, signifies that the information is to be forwarded for
brokering purposes. In the Phoenix architecture this would be used by the Submission
Service, telling it to interact with one or more Information Brokering Services.

3. The receiptRequestFlag is the flag that defines what type delivery confirmation has been
requested for this instance of managed information, if any.

4. The degradableFlag signals what mode(s) of degradation are allowed for this instance of
managed information.

Public Operations

addConsumers(consumerChannels : List<ChannelContext>) : void

Stamp this information context with a set of consumers for the information. This is an
append operation.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
30

• consumerChannels - The set of consumer channels to use to deliver this
information instance.

getAllowedDegradationMode() : int

Retrieve the degradation mode flag, which signals what mode(s) of degradation are
allowed for this instance of managed information. Semantics of this flag are
implementation dependent; at minimum it should be treated like a boolean (zero means
no degradation allowed, non-zero means at least one kind of degradation allowed). It is
anticipated that in some implementations the degradation flag may be a bitmask
encoding multiple degradation modes, all of which are allowed.

getBrokeringFlag() : int

Retrieve the flag that signals what brokering mode to use for this instance of managed
information.

getConsumers() : List<ChannelContext>

After an Information Brokering operation, this attribute contains the list of channels for
the consumers that wish to receive the information instance.

getPersistenceFlag() : int

Retrieve the flag that signals what type of persistence mode is being requested for this
instance of information. Persistence modes are defined by the individual implementations
of the Phoenix architecture.

getReceiptRequestFlags() : List<ConfirmationType>

Retrieve the flags that signal what types of delivery confirmation is being requested by
the producer of the information (if any).

setAllowedDegradationMode(degradableFlag : int) : void

Set the degradation mode flag for this instance of information. The degradable flag
indicates how information-degrading filters are permitted to modify the information
(which may be necessary for quality-of-service purposes). Semantics of this flag are
implementation dependent; at minimum it should be treated like a boolean (zero means
no degradation allowed, non-zero means at least one kind of degradation allowed). In
some implementations the value of this flag may be a bitmask encoding multiple
degradation modes, all of which are allowed.

Arguments:

• degradableFlag - The degradation mode flag for this instance of information.

setBrokeringFlag(brokeringFlag : int) : void

Set the brokering mode flag for this instance of information.

Arguments:

• brokeringFlag - The brokering mode flag for this instance of information.

setPersistenceFlag(persistenceFlag : int) : void

Set the persistence mode flag for this instance of information.

Arguments:

• persistenceFlag - The persistence mode flag for this instance of information.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
31

setReceiptRequestFlags(flags : List<ConfirmationType>) : void

Set the receipt request confirmation flags for this instance of information.

Arguments:

• flags - The receipt request confirmation flags for this instance of information.

InformationInputChannel

An interface for an information input channel.

Public Operations

read() : Information

Read a single information instance from the channel.

Raised Exceptions:

• ChannelException

read(numberToRead : int) : List<Information>

Read a set of information instances from the channel.

Arguments:

• numberToRead - The number of information instances to read from the channel.
This method will not return until it reads this number of instances.

Raised Exceptions:

• ChannelException

InformationOutputChannel

This interface defines an information-specific output channel.

Public Operations

write(information : Information) : void

Writes an instance of information to the Channel.

Arguments:

• information - The information instance that is to be written to the Channel.

Raised Exceptions:

• ChannelException

write(information : List<Information>) : void

Writes an array of instances of information to the Channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
32

Arguments:

• information - The information instances that are to be written to the Channel.

Raised Exceptions:

• ChannelException

InformationServiceContext

This context is used to define a set of attributes that are common to the Contexts describing the
services that operate upon Information within the Phoenix architecture. This includes the list of
supported Information types, the associated service's current and maximum throughput rate (in
Information Context instances per second), and a list of the actors who currently have an open
and active Data Channel with the associated service.

An Information Service Context supports at least the following attributes: supportedInfoTypes,
currentThroughputRate , maxSupportedThroughputRate, and connectedActors.

1. The supportedInfoTypes is a list of type identifiers that the associated Information service
currently supports. It is up to the implementation of the abstract architecture to define
what is meant by "supporting" an Information type. This is the list of information types
that this service is allowed to operate upon.

2. The currentThroughputRate is the aggregate data throughput rate of all channels
currently connected to this service. It is up to the implementation of the abstract
architecture to define the unit of measure for this variable's value.

3. The maxSupportedThroughputRate is the maximum supported aggregate throughput rate
for the service. Again, it is up to the implementation of the abstract architecture to define
the unit of measure for this variable's value.

4. The list of connectedActors contains the identifiers for the actors who currently have
channels established with the associated service.

Public Operations

addConnectedActor(actorId : String) : void

Add a newly connected actor to the list of tracked actors.

Arguments:

• actorId - The actor identifier for the newly connected actor.

getConnectedActors() : List<String>

Retrieve the list of identifiers for the actors who are currently connected to this service
over a data channel.

getCurrentThroughputRate() : long

Retrieve the metric describing the current information throughput rate. The actual unit of
measure is left up to the implementation.

getMaxSupportedThroughputRate() : long

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
33

Retrieve the theoretical maximum throughput rate for this service. The actual unit of
measure is left up to the implementation.

getSupportedInformationTypes() : List<String>

Retrieve the list of identifiers for the information types that are currently supported by
the associated parent service.

removeConnectedActor(actorId : String) : void

Remove the identified actor from the list of connected actors.

Arguments:

• actorId - The identifier for the actor to be removed.

Session

The session group contains the interfaces that define the constructs used to support session
management:

• ActorContext

• SessionContext

• SessionTrack

ActorContext

This Context is used to describe an entity that interacts with one or more Phoenix services. It
may contain attributes describing security credentials, role set(s), QoS characteristics, or the
session identifier associated with this actor. The Actor Context is defined as the IM Service's view
of the actor and contains state information such as the lists of registered subscription and query
expressions for this actor. Actor contexts are tracked by the Session Management Service and
utilized by this service to create sessions.

Public Operations

getSessionId() : String

This method returns the sessionId that is the unique identifier of the session associated
with this Actor Context. This is stored here to provide a seamless ability to trace back
from the Actor Context to its Session Context.

setSessionId(sessionId : String) : void

Set the session identifier for this actor.

Arguments:

• sessionId - The session identifier.

SessionContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
34

The Phoenix architecture identifies interactions between individual actors by creating sessions for
each semi-permanent interactive information exchange between a subset of the IMS services
and actors. Session constructs contain data about the actor for whom the session has been
created. Most control methods defined by the Phoenix architecture expect a set of session
identifiers to be supplied with each invocation. These describe the pedigree of the control
invocation and are useful for authorization purposes. The Design Team has taken the time to
clearly define what is expected to be stored within a Session construct in order to maximize the
utility of this construct and minimize the potential negative impacts upon the IM Services. The
contents of a session construct can be found described within the UML model.

The Session Context is used to describe an actor's Session(s) that have been registered with the
Phoenix Session Management Service. It contains a copy of the actor-provided ActorContext. The
Session Context is defined as the IM Service's view of a registered actor's intended usage of the
services. This context should contain some kind of date-time based attribute that enables
transactional updates to Sessions (thread-safe updates).

Session Contexts have three required attributes: actorContext, defaultBroker, and
lastCommitTime.

1. The actorContext attribute is a copy of or pointer to the Actor Context object associated
with this Session Context. This, along with the session identifier contained within the
ActorContext, provides a seamless association between an actor and its session(s).

2. The defaultBroker is a copy of or pointer to the control stub for the Service Broker
Service to be used by the Session associated with this Session Context. This is used as
the Session's broker for services, unless its value is null. In this case it is assumed that
the actor for this Session Context already knows how to communicate with the services it
wishes to make use of.

3. The lastCommitTime is a timestamp used by the Session Management Service to de-
conflict updates to the Session Context. This is necessary because multiple actors of the
Phoenix IM Services may try to update the Session at nearly the same time and with
vastly different versions of the same Session Context. It is up to the implementation to
determine which update call will be used to maintain the state of the context.

Public Operations

getActorContext() : ActorContext

Returns the ActorContext for the actor associated with this session.
getBroker() : BaseServiceStub

Returns the control stub for the Service Broker Service, if this field has been set.
getTimeLastUpdated() : long

Returns the date-time stamp signifying when this context was last updated. This field is
used to track update requests and determine whether or not the requestor had an up-to-
date copy of the context to begin with.

setActorContext(ctx : ActorContext) : void

Set the ActorContext for the actor associated with this session.

Arguments:

• ctx - The ActorContext for the actor associated with this session.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
35

setBroker(stub : BaseServiceStub) : void

Set the control stub for the ServiceBrokeringService for this session (if applicable).

Arguments:

• stub - The control stub for the ServiceBrokeringService for this session (if
applicable).

timeStamp() : void

Stamp this Context with the current date and time.

SessionTrack

This object contains session identifiers used to track the usage of services and, potentially, to
make policy decisions regarding how services may be used by actors.

A SessionTrack instance contains a listing of session identifiers for all actors who have been part
of the associated service method invocation chain. Each member of the invocation chain should
stamp the SessionTrack instance with their own session identifier before either performing any
associated actions or passing along the invocation to another actor.

Public Operations

addSessionId(sessionId : Object) : void

Add the session identifier of the current invocator to the method invocation pedigree list.

Arguments:

• sessionId - The session identifier to add to the pedigree list for this associated
method invocation chain.

getOriginatingSessionId() : Object

Returns the originating actor's session identifier. This is the actor who began the
associated method invocation chain.

getCurrentSessionId() : Object

Returns the session identifier for the actor who last invoked this method.
getSessionPedigreeList() : List<Object>

Returns the complete listing of all session identifiers for all actors who have invoked the
associated service method as part of the current method invocation chain.

Channel

The channel group provides the interfaces, contexts, and supporting components that define the
data and control channels for interacting with the services that perform some kind of operation
upon managed information. The channel interfaces are:

• BaseChannel

• BaseChannelService

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
36

• BaseChannelServiceConnector

• BaseChannelServiceStub

• ByteInputChannel

• ByteOutputChannel

• ChannelContext

• ChannelException

• ChannelServiceDescriptorContext

• ChannelState

• EndPointContext

• Handler

• InputChannel

• InputChannelContext

• InputHandler

• OutputChannel

• ProtocolContext

• TransportProtocolContext

BaseChannel

This interface defines the basic methods that are to be shared by all Channels. Channels are
expected to contain a ChannelContext that defines what the channel is and tracks its current
state and status. Channels are the means through which information, in whatever format, are
moved between Phoenix services and are the preferred method of moving information, again in
whatever format, between the Phoenix Dissemination Service and its registered consumers.

Public Operations

getChannelContext() : ChannelContext

Retrieve the ChannelContext that describes this Channel instance.
This method returns a ChannelContext.

isActive() : boolean

Depending on if this is an input or output channel, check if the channel has been opened
or connected.

isInput() : boolean

This method returns true if the channel instance is an implementation of the
InputChannel interface, and false if the channel is an implementation of the
OutputChannel interface.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
37

updateContext(attributesToUpdate : Map) : void

Update the ChannelContext that describes this Channel. This will potentially alter the
Channel instance itself.

Arguments:

• attributesToUpdate - The attributes to be updated along with their associated new
values.

BaseChannelService

This service interface extends the Base Service and provides administration methods for
managing a service's channels.

Public Operations

configureActorOutputChannelContext(sessionTrack : SessionTrack, channelCtx :
ChannelContext) : ChannelContext

Associate the given channel context with a service input channel and session identifier
(from the SessionTrack). Implementations of this method may automatically create
service input channels when an output channel is requested.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelCtx - The context that describes the output channel to be created by the
actor.

Raised Exceptions:

• Exception

createInputChannel(sessionTrack : SessionTrack, channelCtx : ChannelContext) :
String

Create a new input channel for the service to use to communicate with another actor.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelCtx - The configuration to use for the new input channel.

Raised Exceptions:

• Exception

createOutputChannel(sessionTrack : SessionTrack, channelCtx : ChannelContext) :
String

Create a new output channel for the service to use to communicate with another actor.
This method should be used by orchestration services to align services into information
pipelines.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
38

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelCtx - The configuration to use for the new output channel.

Raised Exceptions:

• Exception

destroyInputChannel(sessionTrack : SessionTrack, channelId : String) : boolean

Destroy the identified input channel.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelId - The identifier for the channel to be destroyed.

Raised Exceptions:

• Exception

destroyOutputChannel(sessionTrack : SessionTrack, channelId : String) : boolean

Destroy the identified output channel.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelId - The identifier for the channel to be destroyed.

Raised Exceptions:

• Exception

getAvailableInputChannels(sessionTrack : SessionTrack): List<ChannelContext>

Retrieve the list of channel contexts that describe the locations of the input channels for
this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

getModifiableServiceAttributes(sessionTrack : SessionTrack): Map<String, Object>

Return the hierarchical view of service attributes that can be modified by external actors.
For example, this method could return the list of identifiers for the channels that the
service owns and their settings and the channel filters and their settings.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
39

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

getServiceAttributeValue(sessionTrack : SessionTrack, attributeName : String) :
Object

Retrieve an attribute's value from the ServiceContext for this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• attributeName - The identifier for the attribute whose value should be retrieved.

Raised Exceptions:

• Exception

getServiceId(sessionTrack : SessionTrack) : Object

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

resumeChannels(sessionTrack : SessionTrack, channelIds : List<String>) : void

Resume normal operations for the identified channels.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelIds - The set of channel identifiers for the channels to resume normal
operations on.

Raised Exceptions:

• Exception

setServiceAttributeValue(sessionTrack : SessionTrack, attributeName : String,
attributeValue : Object) : void

Set an attribute's value in the ServiceContext for this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• attributeName - The identifier for the attribute whose value should be set.

• attributeValue - The value of the identified attribute.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
40

Raised Exceptions:

• Exception

suspendChannels(sessionTrack : SessionTrack, channelIds : List<String>) : void

Suspend normal channel operations on the identified channels.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelIds - The list of channel identifiers for the channels to suspend normal
operations on.

Raised Exceptions:

• Exception

updateChannel(sessionTrack : SessionTrack, channelId : String, updateContext :
ChannelContext) : void

Update the configuration for the identified channel.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelId - The unique identifier of the channel to be updated.

• updateContext - The channel context containing the settings to be updated.

Raised Exceptions:

• Exception

BaseChannelServiceConnector

This interface extends the Base Service Connector and the Base Channel Service, thereby
inheriting, and thus exposing, all methods from that service.

Public Operations

(Inherited from the Base Channel Service)

BaseChannelServiceStub

This interface represents a stub for the base channel service and extends the Base Service Stub
and the Base Channel Service. It exposes all methods inherited from the Base Channel Service in
addition to those methods listed here that are specific to the stub.

Public Operations

connect(sessionTrack : SessionTrack) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
41

Connects the stub to its corresponding connector.

Arguments:

• sessionTrack - Contains the identifier for the session whose owner is attempting
to connect this stub.

Raised Exceptions:

• Exception

disconnect(sessionTrack : SessionTrack) : void

Disconnect the stub from its corresponding connector.

Arguments:

• sessionTrack - Contains the identifier for the session whose owner is attempting
to disconnect this stub.

Raised Exceptions:

• Exception

resume(sessionTrack : SessionTrack) : void

Resume forwarding method invocations to its corresponding connector.

Arguments:

• sessionTrack - Contains the identifier for the session whose owner is attempting
to resume operations upon this stub.

Raised Exceptions:

• Exception

suspend(sessionTrack : SessionTrack) : void

Suspend the stub, keeping the connection open to the connector but not passing any
method invocations to it until the stub is resumed.

Arguments:

• sessionTrack - Contains the identifier for the session whose owner is attempting
to suspend operations upon this stub.

Raised Exceptions:

• Exception

ByteInputChannel

A byte specific input channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
42

read(bytes : byte[]) : int

Read a set of bytes from the channel. This method returns the number of bytes read from
the channel.

Arguments:

• bytes - The byte array to read the bytes from the channel into.

Raised Exceptions:

• ChannelException

read(bytes : byte[], offset : int, length : int) : int

Read a set of bytes from the channel beginning at the specified offset and continuing for
the specified length. This method returns the number of bytes read from the channel.

Arguments:

• bytes - The byte array to read the bytes from the channel into.

• offset - The offset index for the bytes array. Will start filling the bytes array from
this point.

• length - The number of bytes to read from the channel.

Raised Exceptions:

• ChannelException

ByteOutputChannel

A channel interface for writing bytes.

Public Operations

write(b : byte[]) : void

Write the given bytes to the output channel.

Arguments:

• b - The bytes to be written to the output channel.

Raised Exceptions:

• ChannelException

write(b : byte[], offset : int, length : int) : void

Write the given bytes to the output channel using the specified parameters.

Arguments:

• b - The bytes to be written to the output channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
43

• offset - The array index of the starting position within the given array, b, to read
data from.

• length - The number of bytes to write to the channel from the given array, b.

Raised Exceptions:

• ChannelException

ChannelContext

This context is used to maintain specific parameters associated with the Input and Output
Channels for a particular Transport. This context may be needed to supply additional parameters
to an intermediary entity that resides between a pair of Input and Output Channels, such as data
adaptors, guard technologies, or possibly routers such as Sarvega or Layer 7 boxes.

Public Operations

getApplicationProtocolContext() : ProtocolContext

Retrieve the context containing the application level networking layer settings. These are
expected to be strings that identify the protocol such as "information", "event", "byte",
and "frame".

getChannelState() : ChannelState

This method returns the channelState, whose values are defined by the ChannelState
enumeration. This value describes the current state of the Channel associated with this
Context.

getEndPointContext() : EndPointContext

Retrieve the EndPointContext that contains the URI for the endpoint of the associated
channel.

getSessionTrack() : SessionTrack

Retrieve the session track associated with this channel.
getTransportProtocolContext() : TransportProtocolContext

Retrieve the context that describes the transport level networking layer section.
setApplicationProtocolContext(context : ProtocolContext) : void

Set the context containing the application level networking layer settings.

Arguments:

• context - The context containing the application level networking layer settings.

setChannelState(state : ChannelState) : void

Set the current state of the channel.

Arguments:

• state - The current state of the channel. Possible values are defined by the
ChannelState enumeration.

setEndPointContext(context : EndPointContext) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
44

Set the EndPointContext that contains the URI for the endpoint of the associated channel.

Arguments:

• context - The EndPointContext that contains the URI for the endpoint of the
associated channel.

setSessionTrack(sessionTrack : SessionTrack) : void

Set the session track associated with this channel.

Arguments:

• sessionTrack - The session track associated with this channel.

setTransportProtocolContext(context : setTransportProtocolContext) : void

Set the context defining the transport level network settings.

Arguments:

• context - The context defining the transport level network settings.

ChannelException

The ChannelException class represents an exception that is specific to Channel operations.

Public Operations

getChannelContext() : ChannelContext

Retrieve the ChannelContext that is related to the raised exception.
getSessionTrack() : SessionTrack

Retrieve the SessionTrack that is related to the raised exception.

ChannelServiceDescriptorContext

A service descriptor context for describing services with input channels.

Public Operations

listInputChannelContexts() : List<ChannelContext>

List the contexts describing this service's input channels.

ChannelState

This enumeration lists the possible states for a Channel.

Public Fields

ACTIVE

Depending on whether the channel is an input or output channel, it is either listening for
connections or is connected.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
45

INACTIVE

Depending on whether the channel is an input or output channel, it is either disconnected
or has stopped listening for connections.

NEW

The channel has been created but not yet opened or connected.
SUSPENDED

A channel that has been created and activated, but whose channel operations (read or
write) have been temporarily suspended. What to do with attempted reads/writes is up to
the implementation.

EndPointContext

This context contains the collection of attributes that describe a physical end point associated
with an actor. This is currently used for defining the end points of subscriptions and queries but
may also be used for defining end points for services. The required attributes for
EndPointContext instances are: uri and inBandConsumer.

1. The uri is the actual physical location of the consumer on the network. The URI syntax is
consistent with the Internet Engineering Task Force (IETF) Request for Comments 1630
and is typically defined as a combination of Internet Protocol (IP) address, port, and wire
protocol. In the Phoenix architecture, the URI may also contained other encoded
information that may be of use for such things as underlying channel provisioning, etc.

2. The inBandConsumer flag is used to denote the difference between in-band and out-of-
band consumers. This will signal the services whether or not this consumer expects
delivery of Information through IMS Channels or from other means. This is a boolean
flag.

Public Operations

getHostAddress() : String

Retrieve the string that contains the host location for this end point. For example,
192.168.2.13

getHostPort() : int

Retrieve the port for the end point to communicate on. For example, 2222
getLocalPort() : int

Retrieve the local port for the end point to communicate through. For example, 12121
isInBandConsumer() : boolean

Retrieve the flag that specifies whether or not this consumer is an in-band or out-of-band
consumer. In-band consumers receive information from Phoenix services directly via
channels. Out-of-band consumers receive data from external actors and only use the
Information Brokering capability of Phoenix to identify what information is of interest.

setHostAddress(host : String) : void

Set the string that contains the host location for this end point. For example,
192.168.2.13

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
46

• host - The string that contains the host location for this end point. For example,
192.168.2.13

setHostPort(port : int) : void

Set the port for the end point to communicate on. For example, 2222

Arguments:

• port - The port for the end point to communicate on. For example, 2222

setInBandConsumerFlag(isInBand : boolean) : void

Set the flag for in-band or out-of-band consumer.

Arguments:

• isInBand - The in-band consumer flag.

setLocalPort(port : int) : void

Set the local port for the end point to communicate through. For example, 12121

Arguments:

• port - The local port for the end point to communicate through. For example,
12121

Handler

The Handler class is responsible for handling exceptional cases during channel input and output
operations.

Public Operations

handleException(e : Exception) : void

Handle the provided exception that was raised.

Arguments:

• e - The exception that was raised.

InputChannel<T>

An interface for input channels.

Public Operations

close(sessionTrack : SessionTrack) : void

Closes the listening port for this channel. Any connected output channels will be forcibly
closed by the host. Invoking this method more than once should do nothing and not
generate an exception.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
47

• sessionTrack - The identifier(s) for the actor closing the channel.

Raised Exceptions:

• ChannelException

getInputChannelContext() : InputChannelContext

Retrieve the input channel context for this channel.
getNumberActiveConnections() : int

Retrieve the number of output channels connected to this input channel.
getNumberAvailableConnections() : int

Retrieve the number of connections left for output channels to connect to. This is
computed by subtracting the number of active connections from the connection limit for
the input channel. If no limit is set this method returns a negative value.

isOpen() : boolean

Returns true if this input channel is listening for connections from output channels, false
otherwise.

listConnections() : List<ChannelContext>

Retrieve the list of channel contexts that describe the output channels currently
connected to this input channel.

open(sessionTrack : SessionTrack) : void

Open the listening port for this channel and make the channel ready to accept
connections from output channels. Invoking this method more than once should do
nothing and not generate an exception.

Arguments:

• sessionTrack - The identifier(s) for the actor opening the channel.

Raised Exceptions:

• ChannelException

read(reHandler : InputHandler<T>) : void

Read data from this channel asynchronously using the given handler.

Arguments:

• reHandler - The handler responsible for processing the data received from the
channel and any exceptions raised.

InputChannelContext

A channel context specifically for input channels.

Public Operations

addConnection(context : ChannelContext) : String

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
48

Add a channel context for a connected output channel.

Arguments:

• context - The context for the output channel that has connected to this input
channel.

getConnectionLimit() : int

Retrieve the maximum number of allowed connections for this input channel. The default
for this is the maximum number of connections allowed by the implementation and its
supporting hardware.

listConnections() : List<ChannelContext>

List the current set of contexts for the output channels that are connected to this input
channel.

removeConnection(id : String) : void

Remove the channel context for the identified output channel that has disconnected from
this input channel.

Arguments:

• id - The identifier for the output channel that has disconnected from this input
channel.

setConnectionLimit(limit : int) : void

Set the maximum number of allowed connections for this input channel. The default for
this is the maximum number of connections allowed by the implementation and its
supporting hardware. Setting this value to zero is equivalent to reseting it to the default
value.

Arguments:

• limit - The maximum number of allowed connections for this input channel.

InputHandler<T>

This class handles the input received over input channels.

Public Operations

handleObject(object T) : void

Handle the received object of type T.

Arguments:

• object - The object to handle.

OutputChannel<T>

An output Channel is used to output data to a channel. The format of the data is defined by the
specific sub-interfaces of this interface: information, event, and bytes.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
49

Public Operations

connect(sessionTrack : SessionTrack) : void

Connect this output channel to an input channel. Invoking this method more than once
should do nothing and not generate an exception.

Arguments:

• sessionTrack - The identifier(s) for the actor connecting the channel.

Raised Exceptions:

• ChannelException

disconnect(sessionTrack : SessionTrack) : void

Disconnect this output channel from its associated input channel. Invoking this method
more than once should do nothing and not generate an exception.

Arguments:

• sessionTrack - The identifier(s) for the actor disconnecting the channel.

Raised Exceptions:

• ChannelException

flushQueue() : void

Flush the current contents of the output queue.
isConnected() : boolean

Check if this output channel is connected to an associated input channel. Returns true if
so, False otherwise.

isQueueEmpty() : boolean

Check if the current output queue is empty. Returns true if it is empty, False otherewise.
writeAsync(data : T) : void

Write the given data to the output channel in an asynchronous fashion.

Arguments:

• data - The data to be written to the output channel.

ProtocolContext

This context is intended to hold quality of service and other as yet undefined attributes related to
a channel's network application layer protocol and mechanisms.

Public Operations

getProtocolId() : String

Retrieve the identifier for the application level protocol for this string.
setProtocolId(protocolId : String) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
50

Set the identifier for the application level protocol for this string.

Arguments:

• protocolId - The identifier for the application level protocol for this string.

TransportProtocolContext

This context is intended to hold quality of service and other as yet undefined attributes related to
a channel's network transport layer protocol and mechanisms.

Public Operations

getMaxMessageSize() : int

Retrieve the max message size supported by this protocol.
isPersistConnection() : boolean

Retrieve the flag telling whether or nor this protocol uses persistent connections.
listMessageEncodings() : List<String>

Retrieve the list of encoders to apply to this protocol.
setMaxMessageSize(maxSize : int) : void

Set the max message size supported by this protocol.

Arguments:

• maxSize - The max message size supported by this protocol.

setMessageEncodings(encodings : List<String>) : void

Set the list of encoders to apply to this protocol.

Arguments:

• encodings - The list of encoders to apply to this protocol.

setPersistConnection(persist : boolean) : void

Set the flag telling whether or not this protocol uses persistent connections.

Arguments:

• persist - The flag telling whether or nor this protocol uses persistent connections.

Expression

The expression group provides the interfaces, contexts, and supporting components that define
the Phoenix architecture’s support for describing expressions. The expression interfaces are:

• ExpressionContext

• ExpressionProcessor

• ExpressionServiceContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
51

ExpressionContext

This Context describes an expression to be used for brokering or query operations.

Public Operations

getExpression() : String

The constraint(s) to be applied over the metadata during the brokering process. This
defines what information is of interest to the consumer requesting the brokering
operation.

getExpressionType() : String

The type of expression that this Context describes.
setExpression(expression : String) : void

Set the expression instance.

Arguments:

• expression - The expression instance.

setExpressionType(expressionType : String) : void

Set the type of expression.

Arguments:

• expressionType - The expression type identifier.

ExpressionProcessor

An interface for a generic Phoenix expression processor.

Public Operations

addExpression(expressionContext : ExpressionContext, informationTypeNames :
List<String>) : String

Register a expression with this expression processor.
This method returns the unique identifier for the registered expression.

Arguments:

• expressionContext - The context defining the expression to be registered.

• informationTypeNames - The list of information types that the given expression
should be applied to.

Raised Exceptions:

• Exception - if an error occurs during the expression registration process.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
52

evaluate(objectToEvaluate : Object) : List<String>

Evaluate an instance of data against the set of registered expressions.
This method returns the List of subscription unique identifiers whose expressions the
provided object matched.

Arguments:

• objectToBroker - The data instance to be evaluated.

Raised Exceptions:

• Exception - if an error occurs during evaluation.

getSupportedExpressionType() : String

Retrieve the supported expression type identifier.
isRegistered(expressionId : String) : boolean

Check if the specified expression has been registered.

Arguments:

• expressionId - The identifier for the expression.

Raised Exceptions:

• Exception - if an error occurs.

listRegisteredExpressionIds() : List<String>

Retrieve a listing of the set of identifiers for the currently registered expressions.

Raised Exceptions:

• Exception - if an error occurs.

removeExpression(expressionId : String) : void

Remove a registered expression from the set maintained by this processor.

Arguments:

• expressionId - The unique identifier for the expression to be removed.

Raised Exceptions:

• Exception - if an error occurs during evaluation.

updateExpression(expressionId : String, expressionContext : ExpressionContext,
informationTypeNames : List<String>) : void

Update a expression without unregistering and re-registering or even pausing and
resuming.

Arguments:

• expressionId - The identifier for the expression to be updated.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
53

• expressionContext - The context containing the new settings for the expression.

• informationTypeNames - The list of information types that the given expression
should be applied to.

Raised Exceptions:

• Exception - if an error occurs.

ExpressionServiceContext

An interface for service context's whose services utilize expression processors.

Public Operations

listSupportedExpressionTypes() : List<String>

Retrieve the list of expression types that this service supports.

Frame

The frame group contains the interfaces that define and support custom serialization,
encapsulation, and stream sequencing (and dissemination) capability of the Phoenix architecture.
The frame interfaces are:

• Frame

• FrameInputChannel

• FrameOutputChannel

Frame

The interface used to define frame segments of a stream. A frame is a non-serialized piece of
data which has a custom byte-format. It is generally more difficult to manage than information,
but higher-performance in its dissemination and processing.

Public Operations

getHeader() : byte[]

Gets the header portion of the frame.
getData() : byte[]

Gets the data portion of the frame.
getTotalSize() : int

Gets the total size of the frame include data, header and internals.
getStreamId() : String

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
54

Return the string that is used to identify the stream and to query the attributes of the
stream.

setStreamId(streamId : String) : void

Set a string that is used to identify the stream and to query the attributes of the stream.

Arguments:

• streamId - The streamId of this frame

getFrameNumber() : long

Returns the frame number in relation to the stream.
setHeader(header : String) : void

Sets the header portion of the frame.

Arguments:

• header - The header portion of the frame.

setData(data : byte[]) : void

Sets the data portion of the frame.

Arguments:

• header - The data portion of the frame.

setData(frameNumber : long) : void

Sets the frame number in relation to the stream.

Arguments:

• frameNumber - The frame number of this frame in the sequence of the entire
stream.

FrameInputChannel

A frame-specific input channel.

Public Operations

read() : Frame

Read a single frame from the channel.

Raised Exceptions:

• ChannelException

read(numberToRead : int) : List<Frame>

Read a set of frames from the channel. This method will not return until the specified
number of frames have been read.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
55

• numberToRead - The number of frames to read from the channel.

Raised Exceptions:

• ChannelException

FrameOutputChannel

A frame-specific output channel.

Public Operations

write(frame : Frame) : void

Writes a frame to the Channel.

Arguments:

• frame - The frame to be written to the Channel.

Raised Exceptions:

• ChannelException

write(frames : List<Frame>) : void

Writes several frames to the Channel.

Arguments:

• frames - The frames to be written to the Channel.

Raised Exceptions:

• ChannelException

Event

The event group provides the interfaces, contexts, and supporting components that define the
components necessary for supporting the concept of event notification. The event interfaces are:

• Event

• EventContext

• EventInputChannel

• EventOutputChannel

• ExceptionEvent

• InformationDeliveryEvent

• InformationDeliveryType

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
56

• InformationEvent

• InformationTypeEvent

Event

Events are used for passing messages or other pieces of unmanaged data between actors. These
pieces of data are separate and distinct from information because they are service-level
interactions that are not subject to the same management mechanisms as information instances.

Public Operations

getBody() : Object

Retrieve the body for this Event.
getEventContext() : EventContext

Retrieve the context for this Event.
getEventId() : String

Retrieve the identifier for this Event.
getFiringActorId() : Object

Retrieve the identifier for the actor who generated and fired this event.
setBody(body : Object) : void

Set the body for this Event.

Arguments:

• body - The body for this Event.

EventContext

This context describes additional detail about an event. Like all other contexts, the event context
may be extended through the definition of additional attributes. For example, if the event type is
"subscriber joined", the context may include details such as the specific information type, for
which event notification is requested. Most of the attributes for this Context would depend upon
the definition of the Event object hierarchy, if any, and its branches. In general, this Context
contains only one required attribute, the eventType, whose possible values are dependent upon
implementation decisions.

Public Operations

addMatchingRequestIds(requestIds : List<String>) : void

Add a set of event notification request identifiers to this event.

Arguments:

• requestIds - The set of event notification request identifiers to add to this event.

getMatchingRequestIds() : List<String>

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
57

Retrieve the set of event notification request identifiers for this event, if any exist.

EventInputChannel

An event-specific input channel.

Public Operations

read() : Event

Read a single event from the channel.

Raised Exceptions:

• ChannelException

read(numberToRead : int) : List<Event>

Read a set of events from the channel. This method will not return until the specified
number of events have been read.

Arguments:

• numberToRead - The number of events to read from the channel.

Raised Exceptions:

• ChannelException

EventOutputChannel

An event-specific output channel.

Public Operations

write(event : Event) : void

Write the specified Event to the channel.

Arguments:

• event - The Event to be written to the channel.

Raised Exceptions:

• ChannelException

write(events : List<Event>) : void

Write the specified Events to the channel.

Arguments:

• events - The Events to be written to the channel.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
58

• ChannelException

ExceptionEvent

This Event is used to report Exceptions asynchronously.

Public Operations

getException() : Exception

Retrieve the Exception that is contained within this Event.

InformationDeliveryEvent

This specific sub-interface of Event provides a helper interface for handling delivery receipt
Events.

Public Operations

getDeliveryType() : InformationDeliveryType

Retrieve the identifier for the type of delivery that this Event is describing.
getOriginatingActors() : List<String>

Retrieve the list of identifiers for the actors whom this delivery receipt Event applied to.

InformationDeliveryType

An enumeration defining the types of information delivery supported by the Phoenix Architecture.

Public Fields

CONSUMER_RECEIPT

A delivery type that identifies that a consumer has received the information.
SUBMISSION_RECEIPT

A delivery type that identifies that a Submission Service has received the information.

InformationEvent

An interface for events pertaining to Information.

Public Operations

getInformationId() : String

Retrieve the identifier for the information instance that this Event is associated with.

InformationTypeEvent

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
59

An Event that refers to a specific Information Type. For example, this could be an event alerting
an actor that another actor has subscribed to a specific information type.

Public Operations

getInformationType() : InformationTypeContext

Retrieve the context describing the information type associated with this event.

Service Interfaces
Service interfaces define the functionality for each service as well as any specific supporting
interfaces required by each individual service. The service interfaces have been sub-divided into
the following functional groups:

Information Service Interfaces
Information services directly manipulate information or information type definitions.

• Dissemination

• Information Brokering

• Information Type Management

• Query

• Repository

• Submission

Dissemination

The dissemination group contains the interfaces that define and support the information
dissemination capability of the Phoenix architecture. The dissemination interfaces are:

• DisseminationService

• DisseminationServiceConnector

• DisseminationServiceContext

• DisseminationServiceStub

DisseminationService

The Dissemination Service extends the Base Channel Service and is responsible for accepting
information and delivering it to consumers. Information forwarded to the Dissemination Service

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
60

from an actor is expected to contain a list of channel definitions as part of the resident
information context. These definitions come in the form of fully defined channel contexts. The
Dissemination Service may, if nceessary, create channels based on these definitions and use
them to deliver information to consumers.

Public Operations

getChannelContexts(sessionTrack : SessionTrack, channelNames : List<String>) :
List<ChannelContext>

Retrieve the contexts describing the channels with the given names.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelNames - The names of the channels to retrieve the channel contexts for.

Raised Exceptions:

• Exception

isManaged(sessionTrack : SessionTrack, channelName : String) : boolean

Check if the identified channel is being managed by this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelName - The identifier for the channel.

Raised Exceptions:

• Exception

listChannelNames(sessionTrack : SessionTrack) : List<String>

Retrieve the set of names of the channels being managed by this Dissemination Service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

Typical Use

This service is typically used in concert with single or multiple Information Brokering or
Repository Services. These services perform brokering and query execution operations and
forward information to be disseminated to the DS. This service may also be used in concert with
other IM services, or as a standalone information dissemination capability, providing that the
utilizing actors conform to the operational semantics of the DS.

Associated Diagrams

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
61

Use Cases

• UC 0000 Phoenix IM Capabilities

Activity Diagrams

• AD 0008 Information Dissemination

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0006 Information Dissemination

Sequence Diagrams

• SQD 0005 Brokering (Information - via Information Channel (In-Band Delivery))

DisseminationServiceConnector

This interface extends the Dissemination Service interface, thereby exposing all of its methods
on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Dissemination Service)

DisseminationServiceContext

This context holds the settings specific to the Dissemination Service and its operations.

Public Operations

getMaxSupportedConsumers() : long

Retrieve the theoretical maximum number of concurrent consumers that the associated
parent service can support.

setMaxSupportedConsumers(max : long) : void

Set the maximum number of concurrently supported consumers for this service.

Arguments:

• max - The maximum number of concurrently supported consumers for this
service.

DisseminationServiceStub

This interface extends the Dissemination Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
62

(Inherited from the Dissemination Service)

Information Brokering

The information brokering group contains the interfaces that define and support the information
brokering capability of the Phoenix architecture. The information brokering interfaces are:

• ConsumerList

• InformationBrokeringService

• InformationBrokeringServiceConnector

• InformationBrokeringServiceContext

• InformationBrokeringServiceStub

ConsumerList

Contains the list of in-band and out-of-band consumers for a subscription. In-band consumers
are defined as those connected directly to one or more Phoenix services using channels. These
consumers receive information directly from Phoenix services through the channels. Out-of-band
consumers are those that are not connected directly to any Phoenix services through channels. If
they receive information being managed by the Phoenix services they are receiving it through
some mechanism other than a Phoenix channel.

Public Operations

addInBandConsumers(consumers : List<String>) : void

Adds a list of in-band consumers to the in-band list.

Arguments:

• consumers - The list of consumer identifiers to add to this ConsumerList.

addOutOfBandConsumers(consumers : List<URI>) : void

Add a set of out-of-band consumers to be added to the out-of-band list.

Arguments:

• consumers - The set of out-of-band consumer URI's to add to the out-of-band list.

getInBandConsumers() : List<String>

Retrieve the listing of in-band consumers. Returns a list of subscription ID's.
getOutOfBandConsumers() : List<URI>

This method retrieves the listing of URI's for the out-of-band consumers.

InformationBrokeringService

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
63

This service extends the Base Channel Service and the Subscription Service interfaces and
provides the information brokering capability of the Phoenix services. Information brokering is
the act of matching submitted information with registered expressions. An information brokering
service must support both the ability to forward brokered information for delivery and the ability
to report the list of matching expressions for a piece of information without delivery.

The architecture defines the information brokering service in such a way that it supports three
distinct brokering use cases:

1. Brokering on-demand via a control method. This method accepts a single instance of
information, brokers it, and returns the consumer hit list of expression identifiers and/or
consumer URIs that the information satisfied.

2. Implicit brokering that results in a stream of hit list results being delivered to interested
entities via event notification.

3. Implicit brokering that results in a stream of information that is forwarded to some
dissemination service for delivery to matching consumers.

Implicit brokering refers to the act of the brokering information received over information
channels. The brokering service interface does not limit the operations that may be performed
upon submitted information during the brokering process.

Brokering of information is done through the use of an expression processor implementation. The
processor is part of the configuration defined in the Information Brokering Service's context.

Public Operations

dropSubscriptions(sessionTrack : SessionTrack, subscriptionIds : List<String>) :
void

This method is used to drop subscriptions. This will remove the internal context for each
identified expression. No return value for this method.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• subscriptionIds - The identifiers of the registered subscriptions to be dropped.

Raised Exceptions:

• Exception

getSubscriptionContexts(sessionTrack : SessionTrack, subscriptionIds :
List<String>) : List<SubscriptionContext>

This method provides a way to access the context objects describing registered
subscriptions. It returns the set of SubscriptionContexts that describe the registered
subscriptions. These contexts contain the expression criteria as well as any other custom
attributes that the registrant utilized to describe what information they are interested in
receiving.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
64

• subscriptionIds - The identifiers of the registered subscriptions whose descriptions
are going to be retrieved.

Raised Exceptions:

• Exception

getConsumers(sessionTrack : SessionTrack, information : Information,
consumerScope : ConsumerReport) : ConsumerList

This method is used to immediately receive the results of a brokering operation over the
supplied information. It returns a ConsumerList object that contains the URI information
and identifiers for the consumers whose registered expression matches the supplied
information.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• information - The information that is to be brokered against the registered
expressions.

• consumerScope - The flag that identifies the types of consumers that the invoker
is interested in. These are identified by the ConsumerReport enumeration.

Raised Exceptions:

• Exception

listRegisteredSubscriptionIds(sessionTrack : SessionTrack) : List<String>

List the identifiers for the set of currently registered subscriptions.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

registerSubscriptions(sessionTrack : SessionTrack, subscriptionContexts :
List<SubscriptionContext>) : List<String>

This method is used to register subscriptions. It returns the identifiers for the registered
subscriptions.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• subscriptionContexts - The Context objects describing the subscriptions to be
registered.

Raised Exceptions:

• Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
65

resumeSubscriptions(sessionTrack : SessionTrack, subscriptionIds : List<String>)
: void

Resume brokering operations over the identified subscriptions.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• subscriptionIds - The identifiers of the registered subscriptions to be resumed.

Raised Exceptions:

• Exception

suspendSubscriptions(sessionTrack : SessionTrack, subscriptionIds :
List<String>) : void

Temporarily suspend brokering operations over the identified subscriptions.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• subscriptionIds - The identifiers of the registered subscriptions to be suspended.

Raised Exceptions:

• Exception

updateSubscription(sessionTrack : SessionTrack, subscriptionId : String,
subscription : SubscriptionContext) : void

Update the identified expression.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• subscriptionId - The identifier for the subscription to be updated.

• subscription - The context containing the new settings for the subscription. It is
up to each implementation to decide if this context is to contain all new values,
with empty values assumed to be removed, or empty values assumed to be
untouched.

Raised Exceptions:

• Exception

Typical Use

This service is typically used in concert with single or multiple Submission and Dissemination
Services to provide a complete publish and subscribe system.

Associated Diagrams

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
66

Use Cases

• UC 0000 Phoenix IM Capabilities

Activity Diagrams

• AD 0005 Brokering (Information - via Control Interface)

• AD 0006 Brokering (Information - via Channels

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0003 Brokering (Information - via Control Interface)

• CD 0004 Brokering (Information - via Channel)

Sequence Diagrams

• SQD 0003 Brokering (Information - via Control Interface)

• SQD 0004 Brokering (Information - Expression Registration (In-Band Consumer))

• SQD 0005 Brokering (Information - via Information Channel (In-Band Delivery))

• SQD 0006 Brokering (Information - Expression Registration (Out-of-Band Producer))

• SQD 0007 Brokering (Information - via Information Channel (Out-of-Band Delivery))

InformationBrokeringServiceConnector

This interface extends the Information Brokering Service and Subscription Service interfaces,
thereby exposing all of their methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Information Brokering Service and the Subscription Service)

InformationBrokeringServiceContext

This context contains any Information Brokering Service specific attributes.

Public Operations

None.

InformationBrokeringServiceStub

This interface extends the Information Brokering Service and the Subscription Service, thereby
inheriting and exposing all of their methods on the stub side of the Phoenix control channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
67

Public Operations

(Inherited from the Information Brokering Service and Subscription Service)

Information Type

The information type management group contains the interfaces that define the service that
creates, manages, and destroys information type definitions. The Information type management
interfaces are:

• InformationTypeContext

• InformationTypeManagementService

• InformationTypeManagementServiceConnector

• InformationTypeManagementServiceStub

• Schema

• ValidationFailedException

InformationTypeContext

This Context describes the attributes necessary to define an information type within the
architecture. It is used by the Information Type Management Service to create, delete, and
archive information types.

This Context has three required attributes: typeName, metadataSchema, and payloadSchema.

1. The typeName is the identifier for the information type as it will be known to the IM
Services. This is used by all actors to identify information of this kind.

2. The metadataSchema is the definition of the structure of the metadata used to describe
the payload. For example, if the metadata for a type of information is to be described by
Extensible Markup Language (XML) documents, the metadataSchema for that type would
be an XML schema document (XSD) stored within a Schema object.

3. The payloadSchema is the definition of the structure of the payload. For example, if the
payload for a type of information is to be described by Extensible Markup Language
(XML) documents, the payloadSchema for that type would be an XML schema document
(XSD) stored within a Schema object.

Public Operations

getInformationTypeName() : String

Retrieve the unique identifier for this registered information type.
getMetadataSchema() : Schema

Retrieve the object defining the structure of the metadata for this information type.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
68

getPayloadSchema() : Schema

Retrieve the object defining the structure of the payload for this information type.
setInformationTypeName(typeName : String) : void

Set the information type identifier.

Arguments:

• typeName - The information type identifier.

setMetadataSchema(schema : Schema) : void

Set the metadata schema.

Arguments:

• schema - The metadata schema object.

setPayloadSchema(schema : Schema) : void

Set the payload schema.

Arguments:

• schema - The payload schema object.

InformationTypeManagementService

The interface for information type management service will provide methods for registering,
retrieving, and deleting information type definitions. This service interface extends the Base
Channel Service interface.

Public Operations

archiveTypeDefinitions(sessionTrack : SessionTrack, typeCtxs :
List<InformationTypeContext>) : void

This method archives the definition of a specified information type. This is for the case
where information of a certain type is moved to the offline archive, but we still need the
description of said type so that we can query the offline archive and make sense of the
information being returned.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• typeCtxs - The Information Type Contexts describing what information types are
to be archived.

Raised Exceptions:

• Exception

createInformationTypes(sessionTrack : SessionTrack, typeCtxs :
List<InformationTypeContext>) : void

Creates a new information type for a specified format of metadata and payload.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
69

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• typeCtxs - The Information Type Contexts containing the definitions of the new
information types.

Raised Exceptions:

• Exception

deleteTypeDefinitions(sessionTrack : SessionTrack, typeCtxs :
List<InformationTypeContext>) : void

Delete the specified information type definition and all records of this type from the data
store.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• typeCtxs - The Information Type Contexts describing what information types are
to be deleted from the registry.

Raised Exceptions:

• Exception

getTypeDefinition(sessionTrack : SessionTrack, ctx : InformationTypeContext) :
InformationTypeContext

Get the type definition for the specified information type.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• ctx - The Information Type Context that contains the parameters used to locate
the information type definition of interest. These may include the type name
identifier, possible hierarchical constraints, or others.

Raised Exceptions:

• Exception

listInformationTypeIdentifiers(sessionTrack : SessionTrack) : List<String>

Returns a list of IDs for all of the registered information types.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
70

updateTypeDefinition(sessionTrack : SessionTrack, typeCtx :
InformationTypeContext) : void

Updates an information type's associated context. The Phoenix Design Team suggests
that this method have policy applied such that the information type name, metadata
schema, and payload schema variables not be allowed to be modified.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• typeCtx - An InformationTypeContext containing the attributes (and their
associated values) to be updated.

Raised Exceptions:

• Exception

Typical Use

This service is for defining and managing information types. It may or may not utilize some kind
of repository to store these definitions. Reading and writing from and to this repository are
internal processes of this service and not exposed to external actors by the service interface,
except in abstract forms (i.e. via methods such as "getTypeDefinition()" and
"createInformationTypes()" respectively).

Associated Diagrams

Use Cases

• UC 0000 Phoenix IM Capabilities

• UC 0007 Information Type Management

Activity Diagrams

• AD 0011 Information Type Management

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0009 Information Type Management

Sequence Diagrams

• (none)

InformationTypeManagementServiceConnector

This interface extends the Information Type Management Service interface, thereby exposing all
of its methods on the connector side of the Phoenix control channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
71

(Inherited from the Information Type Management Service)

InformationTypeManagementServiceStub

This interface extends the Information Type Management Service, thereby inheriting and
exposing all of its methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Information Type Management Service)

Schema

This class represents a usable version of a schema that defines either a metadata or a payload
format for an information type.

Public Operations

getDefinitionDocument() : Object

Retrieve the definition document as an object.
setDefinitionDocument(schemaDoc : Object) : void

Set the definition document using a generic Object representation.

Arguments:

• schemaDoc - The definition document as a generic Object.

Raised Exceptions:

• Exception

validate(data : Object) : boolean

Validate an instance of data against the definition document.

Arguments:

• data - The data to be validated.

Raised Exceptions:

• ValidationFailedException

ValidationFailedException

An exception that provides a mechanism to track exactly what data failed the associated
validation attempt.

Attributes

invalidObject : Object

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
72

The data that failed the validation attempt stored as a generic Object.

Public Operations

getInvalidObject() : Object

Retrieve the invalid object.

Query

The query group contains the interfaces that provide the information retrieval capability of the
Phoenix IM Services. The query interfaces are:

• DataStoreType

• InformationQueryContext

• QueryService

• QueryServiceConnector

• QueryServiceContext

• QueryServiceStub

DataStoreType

This enumeration lists the possible types of data stores that can be connected to a Phoenix
Repository Service or Query Service.

Public Fields

ARCHIVE

Identifies a data store as a relatively higher-latency, higher-capacity data store. These
data stores are synonymous with traditional database archives. These archives are
typically not as readily available as LIVE data stores.

LIVE

Identifies a data store as a relatively lower-latency, lower-capacity data store. These data
stores, called repositories by the Phoenix architecture, are typically more readily available
than ARCHIVE data stores.

InformationQueryContext

A context used specifically for describe queries for information.

Public Operations

addConsumerChannel(consumer : ChannelContext) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
73

Add a consumer channel to receive the results of this query.

Arguments:

• consumer - The context describing the consumer channel to receive the results of
this query.

addExpression(expression : ExpressionContext) : void

Add an expression to this query.

Arguments:

• expression - The expression to be added to this query.

addInformationTypeName(typeName : String) : void

Add an information type name for this query to be applied to.

Arguments:

• infoTypeName - The information type name that this query will be applied to.

getAllResultsReturnedTime() : long

Retrieve the amount of time the inquisitor is willing to wait for its query to return all of its
result set.

getExecutionModeFlag() : int

Retrieve the flag describing the query execution mode. Currently this is envisioned as:
Synchronous (0) or Asynchronous (1).

getFirstResultReturnedTime() : long

Retrieve the amount of time the consumer is willing to listen for the first result that
matches the associated expression.

listConsumerChannels() : List<ChannelContext>

Retrieve the entire list of consumer channels bound to this query.
listExpressions() : List<ExpressionContext>

Retrieve the list of expressions for this query.
listInformationTypeNames() : List<String>

Retrieve the information type names that this query applies to.
setAllResultsReturnedTime(arrt : long) : void

Set the amount of time the inquisitor is willing to wait for its query to return all of its
result set.

Arguments:

• arrt - The amount of time the inquisitor is willing to wait for its query to return all
of its result set.

setExecutionModeFlag(modeFlag : int) : void

Set the flag describing the query execution mode. Currently this is envisioned as:
Synchronous (0) or Asynchronous (1).

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
74

• modeFlag - The flag describing the query execution mode. Currently this is
envisioned as: Synchronous (0) or Asynchronous (1).

setFirstResultReturnedTime(frrt : long) : void

Set the amount of time the consumer is willing to listen for the first result that matches
the associated expression.

Arguments:

• frrt - The amount of time the consumer is willing to listen for the first result that
matches the associated expression.

QueryService

This service extends the Base Channel Service interface and provides an information retrieval
capability. This service permits actors to retrieve records from the underlying data store. Using a
Query Context construct to describe the actual query to be executed allows the architecture to
mandate a small set of required query attributes while leaving the door wide open for individual
implementations of the IM Services to include additional attributes to tune the query processing
of each query service more towards their respective underlying data stores. The query service
will support synchronous and asynchronous query execution. For synchronous queries the
execute query method provided will return a value representing the number of matching records
found. This same method will return nothing when used asynchronously. In all cases the result
set of the query will be returned to the consumer via information channels.

Public Operations

cancelQuery(sessionTrack : SessionTrack, queryId : String) : boolean

Cancel a currently executing query. Executing queries are defined as queries that have
any processor cycles associated with them, i.e. a query is not done executing until all
results (if any) are delivered to the Dissemination Service for delivery.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• queryId - The unique identifier for the query to be canceled.

Raised Exceptions:

• Exception

executeQuery(sessionTrack : SessionTrack, queryCtx : QueryContext) : int

This method processes the specified query to satisfy some inquisitor's request for
information. Actual result sets are delivered via one or more information channels set up
between the consumer and the query service. When this method is invoked
synchronously, the return value signals the inquisitor the estimated number of matching
records that were found or that an error occurred while processing their query. A value of
zero or greater is the estimated number of matching records while values less than zero
are reserved for possible error flags. The returned value is an estimation because, when a
query is executed against a live database more records that match the query could be

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
75

inserted while the query is executing or while the results are being returned to the
inquisitor. When used asynchronously, this method does not return a value.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• queryCtx - The Query Context object that describes what information the
inquisitor is searchig for.

Raised Exceptions:

• Exception

getCounts(sessionTrack : SessionTrack, infoTypeNames : List<String>) :
Map<String, Integer>

Retrieves the number of records in the repository for the specified types. This method
returns a Map of key-value pairs that define how many records there are for each
specified type.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• infoTypeNames - The listing of information type identifiers to retrieve the count(s)
for.

Raised Exceptions:

• Exception

listActiveQueryIds(sessionTrack : SessionTrack) : List<String>

List the unique identifiers for the currently executing queries. Executing queries are
defined as queries that have any processors cycles associated with them, i.e. a query is
not done executing until all results (if any) are delivered to the Dissemination Service for
delivery.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

Typical Use

This service is coordinated with one or more other Query Services to provide read access into
data stores supported by Repository Services. Since the Repository Service extends this service
interface that means a Query Service may end up talking directly to a Repository Service.

Associated Diagrams

Use Cases

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
76

• UC 0000 Phoenix IM Capabilities

• UC 0009 Information Retrieval (Query)

Activity Diagrams

• AD 0013 Information Retrieval (Query)

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0011 Information Retrieval (Query)

Sequence Diagrams

• SQD 0009 Information Retrieval (Query – Synchronous)

• SQD 0010 Information Retrieval (Query – Asynchronous)

QueryServiceConnector

This interface extends the Query Service interface, thereby exposing all of its methods on the
connector side of the Phoenix control channel.

Public Operations

(Inherited from the Query Service)

QueryServiceContext

This context describes the attributes specific to the Query Service which includes any default
query settings such as timeouts and time to live, the set of query languages supported by the
associated Query Service, and the type of data store the associated Query Service is an interface
to (i.e. "Is the underlying data store a repository or an archive?"). The Query Service Context
has five attributes defined for it by the Phoenix architecture: dataStoreType,
defaultMaxresultSetSize, defaultTurnAroundTime, and defaultTimeToLive.

1. The dataStoreType is the kind of data store that the underlying data store represents.
The possible values for this flag are defined by the Data Store Type enumeration.

2. The defaultMaxresultSetSize is the default setting for the maximum number of results to
be returned by any single query against the underlying data store.

3. The defaultTurnAroundTime is the default amount of time that a query has to execute,
build its result set, and deliver all results to the consumer(s).

4. The defaultTimeToLive is the default amount of time that a query has to execute and
build its result set. This is a separate constraint on queries because these operations are
typically the most intensive and can cause the most problems at runtime.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
77

getDataStoreType() : DataStoreType

Retrieve the value describing the type of data store that the associated parent Query
Service is connected to. The range of possible return values are defined in the
DataStoreType enumeration.

getDefaultAllResultsReturnedTime() : long

Retrieve the default amount of time the Query Service is willing to let an inquisitor wait
for their query to return all of its result set.

getDefaultFirstResultReturnedTime() : long

Retrieve the amount of time the Query Service is willing to let the consumer wait for the
first result that matches their associated query.

getDefaultMaxResultSetSize() : long

Retrieve the default value for the maximum number of results that the IM Services are
willing, or allowed, to return to each individual inquisitor for each individual query.

setDataStoreType(type : DataStoreType) : void

Set the type of data store that the associated query service is connected to.

Arguments:

• type - The type of data store that the associated query service is connected to.
Possible values are defined by the DataStoreType enumeration.

setDefaultAllResultsReturnedTime(arrt : long) : void

Set the default amount of time the Query Service is willing to let an inquisitor wait for
their query to return all of its result set.

Arguments:

• arrt - The default amount of time the Query Service is willing to let an inquisitor
wait for their query to return all of its result set.

setDefaultFirstResultReturnedTime(frrt : long) : void

Set the amount of time the Query Service is willing to let the consumer wait for the first
result that matches their associated query.

Arguments:

• frrt - The amount of time the Query Service is willing to let the consumer wait for
the first result that matches their associated query.

setDefaultMaxResultSetSize(maxSize : long) : void

Set the default maximum result set size.

Arguments:

• maxSize - The default maximum result set size.

QueryServiceStub

This interface extends the Query Service, thereby inheriting and exposing all of its methods on
the stub side of the Phoenix control channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
78

Public Operations

(Inherited from the Query Service)

Repository

The repository group contains the interfaces that define the Phoenix IM Services capability to
store information within a repository or archive for later retrieval. The repository interfaces are:

• RepositoryService

• RepositoryServiceConnector

• RepositoryServiceContext

• RepositoryServiceStub

• TableType

RepositoryService

The Repository Service extends the Query Service and provides the ability to manage
information in its associated data store(s). There is no actual insert information method defined
as part of the service API. Instead, the Repository Service receives information via channels
making insertion an internal process. This decision was made to ensure the physical separation
of control versus data interactions. The information storage interface is an extension of the
information retrieval interface. This follows the assumption that if you can write to a section of
disk then you are implicitly able to read from that section as well, i.e. if you can write to the data
store, you should be implicitly able to read from the data store as well. This service also provides
the ability to delete records from the database.

The Phoenix architecture defines two types of data stores: repositories and archives. Repositories
are low-latency high-access data stores that should support higher data read and write rates.
Archives are expected to be higher latency, low access data stores that may not be able to
support high data rates but can store much more data than repositories. A possible
implementation strategy would be to store recent information in a repository while aging data
would be moved to an archive.

Public Operations

archiveRecords(sessionTrack : SessionTrack, query : QueryContext) : int

Archive records that match the provided query. If consumer channels are specified then
write all records to be archived to the channels (remote archive), if no consumer
channels are specified archive to disk in a repository implementation agnostic way (local
archive). There are several possibilities that arise from using a QueryContext for this
operation:

1. If an expression and information types are both specified the expression is applied
to only the specified types and the matching records are archived.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
79

2. If an expression is specified but information types are not the expression is
applied to all supported types and the matching records are archived.

3. If no expression is provided but a set of information types are specified all records
of the specified types are archived.

4. If neither an expression nor a set of information types are specified nothing
happens and an exception is thrown. This is done because we specifically want to
lock out the possibility of the default case being to archive all records for all
supported types.

Returns the total number of records archived.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• query - The context that defines the subset of records to be archived.

Raised Exceptions:

• Exception

deleteRecords(sessionTrack : SessionTrack, query : QueryContext) : int

Delete records that match the provided query. Any consumer channels defined for the
provided query are ignored. There are several possibilities that arise from using a
QueryContext for this operation:

1. If an expression and information types are both specified the expression is applied
to only the specified types and the matching records are deleted.

2. If an expression is specified but information types are not the expression is
applied to all supported types and the matching records are deleted.

3. If no expression is provided but a set of information types are specified all records
of the specified types are deleted.

4. If neither an expression nor a set of information types are specified nothing
happens and an exception is thrown. This is done because we specifically want to
lock out the possibility of the default case being to delete all records for all
supported types.

Returns the total number of records deleted.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• query - The context that defines the subset of records to be deleted.

Raised Exceptions:

• Exception

removeInformationStore(sessionTrack : SessionTrack, infoTypeName : String) :
void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
80

This method will tell the service to permanently remove the data store for the identified
information type. This method should fail if the repository is currently storing data for the
specified information type (i.e. “end” method must be called first, before a “remove” call
is executed).

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• infoTypeName - The name of the information type to remove the resident data
store for.

Raised Exceptions:

• Exception

startStoringInformation(sessionTrack : SessionTrack, typeContext :
InformationTypeContext) : void

This method causes the service to begin storing information of the identified type. If the
type does not have a location (XML container, database table, etc) to store the
information in, one will be created. If a location already exists, that existing location will
be appended to. If the desired functionality is to create a new store for an already
registered type, an actor should call the archive method, which will move the existing
data store contents to another location.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• typeContext - The context that describes the information type to start information
for. This context may be a partial or complete copy of the type definition.
Complete copies are required if the repository service has never stored
information of the identified type.

Raised Exceptions:

• Exception

stopStoringInformation(sessionTrack : SessionTrack, infoTypeName : String) :
void

This method will tell the service to stop storing information of the identified type. Any
further information instances of this type that are received will be ignored (dropped out
of memory at processing time).

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• infoTypeName - The name of the information type to stop storing information
instances for.

Raised Exceptions:

• Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
81

Typical Use

This service is typically paired with the Phoenix Submission Service. It inherits the ability to read
stored information from the underlying data store from the Phoenix Query Service interface. This
service may be implemented in such a way that it can be used as a wrapper for existing legacy
data stores.

Associated Diagrams

Use Cases

• UC 0000 Phoenix IM Capabilities

• UC 0005 Information Storage (Persistence)

Activity Diagrams

• AD 0009 Information Storage (Persistence)

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0007 Information Storage (Persistence)

Sequence Diagrams

• SQD 0008 Information Storage (Persistence)

RepositoryServiceConnector

This interface extends the Repository Service interface (and by extension the Query Service
interface), thereby exposing all of its methods on the connector side of the Phoenix control
channel.

Public Operations

(Inherited from the Query Service and the Repository Service)

RepositoryServiceContext

This is the context used to describe the attributes specific to the Repository Service. This context
inherits all attributes defined by the Query Service Context, just like the Repository Service
interface inherits the methods found in the Query Service interface. The Repository Service
Context contains at least three attributes: maxSize, spaceRemaining, and defaultTableType.

1. The maxSize is the maximum size of the complete data store including all tables for all
supported Information types. The unit of measure for this variable is left up to the
implementations of the abstract architecture.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
82

2. The spaceRemaining is the amount of space remaining for the complete data store.
Again, the unit of measure for this variable is left up to the implementations of the
abstract architecture.

3. The defaultTableType defines the default type of table for registered Information types.
The possible values for this flag are defined by the Table Type enumeration.

Operations

getMaxRepositorySize() : long

Retrieve the theoretical maximum size for the data store that the associated parent
Repository Service is connected to. The actual unit of measure is left to the
implementation designers to determine.

getSpaceRemaining() : long

Retrieve the actual space remaining on the hard drive(s) that the underlying data store is
being hosted on.

getDefaultTableType() : TableType

Retrieve the flag defining the default type of persistence to perform when inserting
information into the underlying data store. Possible values are defined in the TableType
enumeration.

RepositoryServiceStub

This interface extends the Repository Service (and by extension the Query Service), thereby
inheriting and exposing all of its methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Repository Service and Query Service)

TableType

This enumeration lists the possible types of tables that can exist within a data store that is
connected to a Phoenix Repository Service or Query Service.

Public Fields

FIXED_SIZE

This denotes a data store that stops storing data when the corresponding table reaches a
fixed size limit. This limit can be represented as physical disk space, number of records,
or something else defined by the implementation designers.

INFINITE

The data store keeps on storing data until it suffers a hard or soft failure.
ROLLING

The data store keeps inserting data until a set size is reached. Once the limit has been hit
some existing data is removed to make room for the new data to be stored. The data

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
83

removed is determined according to whatever logic or policy that the implementation
designers enact.

Submission

The submission group contains the interfaces that provide the information submission capability
for the Phoenix IM Services. The submission interfaces are:

• SubmissionService

• SubmissionServiceConnector

• SubmissionServiceContext

• SubmissionServiceStub

SubmissionService

The Submission Service extends the Base Channel Service and accepts data from producers,
converts it into managed information, and forwards it to other IM services as required. This
process uses channels internal to the Submission Service and, because of this, there is no
‘submit’ method defined in the service’s control interface.

This service receives information via channels and may involve converting accepted data into the
Phoenix architecture’s supported format for managed information. The submission service
supports the notion of acknowledging acceptance or rejection of submitted data using delivery
receipt Events sent over Event Channels. The architecture defines an information “submission”
service versus information “publication” service because this service does not guarantee the
publication of submitted data (i.e. security and QoS policy constraints). The submission service
must provide mechanisms to forward submitted information to information brokering services
and repository services, but the architecture makes no guarantees that this is done for any
specific piece of submitted data. An implementation of the Submission Service may also provide
mechanisms for forwarding submitted information to other IM services as well depending upon
the requirements of the implementation.

Public Operations

(none)

Typical Use

The Submission Service is the typical entry point for information to be disseminated. As such,
the SS is used in conjunction with any number of other Phoenix information services including
the Information Type Management, Information Brokering, Dissemination, and Repository
Services. The SS may also be coordinated with one or more Session Management and
Authorization Services to support session monitoring and authorization operations.

Associated Diagrams

Use Cases

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
84

• UC 0000 Phoenix IM Capabilities

• UC 0001 Information Submission

Activity Diagrams

• AD 0001 Information Submission

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0001 Information Submission

Sequence Diagrams

• SQD 0001 Information Submission

• SQD 0002 Information Submission (Submission ACK via ENS)

SubmissionServiceConnector

This interface extends the Submission Service interface, thereby exposing all of its methods on
the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Submission Service)

SubmissionServiceContext

The Submission Service Context any values or entities of specific interest or importance to the
Submission Service.

Public Operations

None.

SubmissionServiceStub

This interface extends the Submission Service, thereby inheriting and exposing all of its methods
on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Submission Service)

Utility Service Interfaces

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
85

Utility services provide capabilities that do not directly manipulate information instances, such as
session management or service brokering. They form both the backbone infrastructure of the
Phoenix architecture and provide additional service capabilities that exetnd the usefullness of the
IM system as a whole.

• Client

• Event Notification

• Filter

• Information Discovery

• Security

• Service Brokering

• Session Management

• Subscription

Client

The client group contains the interfaces that define a service designed to live within a client’s
address space. The client interfaces are:

• ClientRuntimeService

• ClientRuntimeServiceConnector

• ClientRuntimeServiceContext

• ClientRuntimeServiceStub

ClientRuntimeService

The Client Runtime Service extends the Base Channel Service and ensures that there is a service
oriented presence on the client-side to support event notification and connectors for reach-back
from services to the client. This allows core IM Services the ability to influence external actors'
address space providing a possible location for client -side policy enforcement and updating,
event notification, or other service-to-external actor interactions. This ability becomes doubly
important when operating on a disadvantaged network where actor communications may phase
in and out over time due to networking degradation or other operational conditions. In this
environment the client runtime service may provide a network buffer at the application level by
queuing outgoing data until it can be transmitted or it may provide proxy IM capabilities for the
client while it is disconnected from the network.

Public Operations

createPublisherChannel

createPublisherChannel(handler : Handler) : String

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
86

This method creates a new connection to the Submission Service. By allowing an actor to
specify the callback object for the channel to use, the actor is able to be made aware of
communication failures. This method returns the identifier for the created channel.

Arguments:

• handler - The exception handler for this channel.

Raised Exceptions:

• Exception

publish(information : Information, waitTimeInMs : long) : void

This method is for blocking publications. If delivery receipts are requested this method
will block until all receipts are returned. If the wait time is expended without return of the
expected delivery receipts an exception is thrown.

Arguments:

• information - The information instance to be published.

• waitTimeInMs - The total time to publish the information instance and to wait for
all delivery receipts, in milliseconds.

Raised Exceptions:

• Exception

publishAsync(information : Information) : void

This is a non-blocking publish method that is used in a fire-and-forget manner. The
invoker does not care about neither the return value from the operation nor any raised
exceptions. Fire and forget assumes that delivery receipts will be ignored if the
corresponding flags were set at publication time.

Arguments:

• information - The information instance to be published.

Raised Exceptions:

• Exception

publishAsync(information : Information, handler : Handler< ? >) : void

A non-blocking publish method that provides a handler interface to handle exceptions.

Arguments:

• information - The information instance to be published.

• handler - The handler to process any return value or raised exception. This
handler is expected to handle any event notification operations associated with
delivery receipts.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
87

• Exception

subscribe(expressions : String[], expressionTypes : String[],
informationTypeNames : List<String>) : void

This subscribe method is used to setup a subscription for information, but not the
consumption of matching information. For example, it may be used to setup a
subscription on the behalf of another actor. This method will generate consumer delivery
receipt events as required, depending on service configuration.

Arguments:

• expressions - The expressions to match information instances against.

• expressionTypes - The types of expressions. The entries in this array are expected
to map to entries in the expressions array on a 1-to-1 basis.

• informationTypeNames - The list of information type names that this subscription
will be applied to. If null or empty the subscription will be applied to all
information types known to the Information Brokering Service it is registered
with.

Raised Exceptions:

• Exception

subscribeAsync(expressions : String[], expressionTypes : String[],
informationTypeNames : List<String>, resultsHandler : InputHandler<Information>) :
String

This method is used to subscribe to information and setup the handler that will process
matching results as they are delivered to the consumer.

Arguments:

• expressions - The expressions to match information instances against.

• expressionTypes - The types of expressions. The entries in this array are expected
to map to entries in the expressions array on a 1-to-1 basis.

• informationTypeNames - The list of information type names that this subscription
will be applied to. If null or empty the subscription will be applied to all
information types known to the Information Brokering Service it is registered
with.

• resultsHandler - The handler for processing matching information instances as
they are delivered to the consumer. This handler is expected to generate any
required delivery receipts.

Raised Exceptions:

• Exception

query(expression : String, expressionType : String, informationTypeNames :
List<String>) : ListInformation

Execute a synchronous query in the traditional manner, where the return of this method
is the actual result set of the query.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
88

Arguments:

• expression - The query expression to execute.

• expressionType - The type of query expression, i.e. "SQL" or "XQuery".

• informationTypeNames - The names of the information types that this query
should be executed over. If null or empty the expression will be executed over the
set of types that the executing Query Service is aware of.

Raised Exceptions:

• Exception

queryAsync(expression : String, expressionType : String, informationTypeNames :
List<String>) : void

This method performs a fire-and-forget query execution where the actual consumers of
the query result set are determined by another mechanism.

Arguments:

• expression - The query expression to execute.

• expressionType - The type of query expression, i.e. "SQL" or "XQuery".

• informationTypeNames - The names of the information types that this query
should be executed over. If null or empty the expression will be executed over the
set of types that the executing Query Service is aware of.

Raised Exceptions:

• Exception

queryAsync(expression : String, expressionType : String, informationTypeNames :
List<String>, controlHandler : Handler, resultsHandler :
InputHandler<Information>) : String

Execute a query in asynchronous fashion, delivering the result set to the invoker.

Arguments:

• expression - The query expression to execute.

• expressionType - The type of query expression, i.e. "SQL" or "XQuery".

• informationTypeNames - The names of the information types that this query
should be executed over. If null or empty the expression will be executed over the
set of types that the executing Query Service is aware of.

• controlHandler - The handler for control interactions such as checking query
status or canceling the query.

• resultsHandler - The handler for processing the query result set as it is delivered.

Raised Exceptions:

• Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
89

Typical Use

This service is envisioned to be a policy enforcement point for Quality of Service (QoS) and/or
security applications. It will also function as a proxy for clients who do not wish to implement
complete Phoenix clients within their code.

Associated Diagrams

Use Cases

• UC 0000 Phoenix IM Capabilities

• UC 0012 Client Reach-Back

Activity Diagrams

• 0018 Client Reach-Back (Local Policy Capture & Enforcement)

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0012 Client Reach-Back

Sequence Diagrams

• None.

ClientRuntimeServiceConnector

This interface extends the Client Runtime Service interface, thereby exposing all of its methods
on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Client Runtime Service)

ClientRuntimeServiceContext

The Client Runtime Service Context is used to store and track the registered subscriptions and
active queries for an associated external actor, which is what we notionally call a client. The
minimum required attributes for this Context are: activeSubscriptionIds and activeQueryIds.

1. The list of activeSubscriptionIds contains the set of subscription IDs for subscriptions that
the associated client actor has registered with the IM Services.

2. The activeQueryIds list contains the IDs for all currently active queries that have been
executed by the associated client actor.

Public Operations

addActiveQuery(id : String) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
90

Add an active query to this client's state.

Arguments:

• id - The identifier for the active query.

addRegisteredSubscription(id : String) : void

Add a subscription to this client's state.

Arguments:

• id - The identifier for the registered subscription.

getActiveQueryIds() : List<String>

Retrieve the list of identifiers for all active and unfulfilled queries that have been
submitted by this client actor.

getRegisteredSubscriptionIds() : List<String>

Retrieve the list of identifiers of all subscriptions for this client actor that are currently
registered with the Information Broker.

removeActiveQuery(id : String) : void

Remove a query from this client's state.

Arguments:

• id - The identifier of the query to be removed.

removeRegisteredSubscription(id : String) : void

Remove a subscription from this client's state.

Arguments:

• id - The identifier for the subscription to be removed.

ClientRuntimeServiceStub

This interface extends the Client Runtime Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Client Runtime Service)

Event Notification

The event notification group contains the interfaces that define Phoenix’s event notification
service. The event notification interfaces are:

• EventDescriptorContext

• EventNotificationRequestContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
91

• EventNotificationService

• EventNotificationServiceConnector

• EventNotificationServiceContext

• EventNotificationServiceStub

EventDescriptorContext

A context for describing a registered event.

Public Operations

getRegistrationId() : String

Retrieve the registration ID for the described Event class.
getDescription() : String

Retrieve the human readable and understandable description for the described Event
class.

EventNotificationRequestContext

A context for registering for event notifications.

Public Operations

addConsumerChannel(channel : ChannelContext) : void

Add a consumer channel context to a specific subset of events.

Arguments:

• channel - The channel context

addEventDescriptorId(descriptorId : Object) : void

Add an Event class's registration ID to limit this request to a specific sub-set of events.

Arguments:

• descriptorId - The String containing the descriptor ID.

addFiringActorId(firingActorId : Object) : void

Add a specific actor's ID to limit this request to a specific sub-set of actors.

Arguments:

• firingActorId - The String containing the ID for the firing actor.

getConsumerChannels() : List<ChannelContext>

Retrieve the set of consumer channel contexts.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
92

getEventDescriptorIds() : List<String>

Retrieve the set of registration IDs for the events this request is limited to.
getFiringActorIds() : List<Object>

Retrieve the set of actor IDs for the actors this request is limited to.
removeConsumerChannel(contextId : String) : void

Removes a channel context based on the ID.

Arguments:

• contextId - The ID of the channel context that is to be removed.

removeEventDescriptorId(descriptorId : Object) : void

Remove an event class's registration ID from this request.

Arguments:

• descriptorId - The String denoting the descriptor ID to be removed.

removeFiringActorId(firingActorId : Object) : void

Remove an actor ID from this request.

Arguments:

• firingActorId - The String denoting the actor ID to be removed.

EventNotificationService

This service extends the Base Channel Service and provides a central event delivery capability.
The logic describing when to fire an event and the construction of said event will reside within
other IM services, external to this service. Actors may register for delivery of events of a certain
type, or by using other implementation-specific criteria. When an event is fired by an IM service,
the event notification service will deliver said event to all registered entities whose criteria match
the fired event. The Phoenix IM services also support direct event communications between
actors via the notion of Event Channels. Direct event communication and the central event
notification service have been architected in such a way that both may be supported and utilized
by all Phoenix services and actors.

Public Operations

deleteEventDescriptor(sessionTrack : SessionTrack, eventInstance : descriptorId
: String) : void

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• descriptorId - The identifier of the event descriptor that is to be deleted.

Raised Exceptions:

• Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
93

dropNotificationRequests(sessionTrack : SessionTrack, requestIds :
List<String>) : void

Drop the identified notification requests.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• requestIds - The list of identifiers for the notification requests to be dropped.

Raised Exceptions:

• Exception

getEventRegistrationId(sessionTrack : SessionTrack, eventInstance : Event) :
String

Retrieve the registration identifier for a specific event class, if registered. If event class is
not registered, throw an exception.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• eventInstance - A sample instance of the event to look up the registration
identifier for.

Raised Exceptions:

• Exception

listRegisteredEventDescriptors(sessionTrack : SessionTrack) :
List<EventDescriptorContext>

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

notify(sessionTrack : SessionTrack, events : List<Event>) : void

Notify consumers of matching requests of the given events.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• events - The events that have been fired.

Raised Exceptions:

• Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
94

registerEventDescriptor(sessionTrack : SessionTrack, eventInstance : Event,
description : String) : String

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• event -

• description -

Raised Exceptions:

• Exception

registerNotificationRequest(sessionTrack : SessionTrack, requestCtxs :
List<EventNotificationRequestContext>) : List<String>

Register a request to be notified of specific events as they occur within other services.
This method returns a list of identifiers for the specific Notification Requests.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• requestCtxs - The list of contexts describing the event notification requests to be
registered with the service.

Raised Exceptions:

• Exception

Typical Use

The notion of confirming delivery of information, or reporting the failure of delivery, is a specific
Use Case associated with the event notification concept supported by this architecture. There
have been four specific instances of delivery receipts identified by the design team:

1. Submission Service Acknowledgement (SACK) – This case covers the act of the
Submission Service signaling the producer that it received a specific instance of
information.

2. Submission Service Negative Acknowledgement (SNACK) – This case covers the act of
the Submission Service signaling the producer that it attempted, but failed, to receive a
specific instance of information.

3. Submission Service Muted Acknowledgement (SMACK) – This is the case where the
Submission Service provides neither a SACK nor a SNACK to the producer. This is the
default case for all submitted information.

4. Consumer Acknowledgement – This is the case where the producer wishes to be notified
that the consumers of its submitted information have indeed received it.

Logical combinations of these four instances of delivery receipts follow depending on the settings
of the Submission Service and the types of delivery receipt requested by the producer.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
95

Associated Diagrams

Use Cases

• UC 0000 Phoenix IM Capabilities

• UC 0001 Information Submission

• UC 0006 Event Notification

• UC 0008 Information Consumption (Subscription)

Activity Diagrams

• AD 0010 Event Notification

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0008 Event Notification

Sequence Diagrams

• SQD 0002 Information Submission (Submission ACK via ENS)

• SQD 0007 Brokering (Information – via Information Channel (Out-of-Band Delivery))

EventNotificationServiceConnector

This interface extends the Event Notification Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Event Notification Service)

EventNotificationServiceContext

A context specifically for the Event Notification Service.

Public Operations

getRegisteredEventDescriptors() : List<EventDescriptorContext>

Retrieve a listing of the registered event descriptors supported by the associated Event
Notification Service.

setRegisteredEventDescriptors(eventDescriptors : List<EventDescriptorContext>) :
void

Set the listing of registered event descriptors supported by the associated Event
Notification Service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
96

• eventDescriptors - The listing of registered event descriptors supported by the
associated Event Notification Service.

EventNotificationServiceStub

This interface extends the Event Notification Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Event Notification Service)

Filter

The filter group provides the interfaces, contexts, and supporting components that define the
filtering capability described by the Phoenix architecture. The filter interfaces are:

• Filter

• FilterChain

• FilterChainContext

• FilterContext

• FilterManagementService

• FilterManagementServiceConnector

• FilterManagementServiceStub

Filter

Filters may be used by the Phoenix architecture to provide a mechanism by which data or
information may be transformed, enhanced, degraded, or processed in some way as it flows
through the IM system. Filters may be applied within a given service, component, or channel.
Filters may be used to apply security, QoS, or other policies. Filters are envisioned to support
any type of operation, from compression and decompression to removing sensitive data before
transmission.

Filters are created by actors and registered with the Filter Management Service.

Public Operations

activate() : void

Activate the mechanisms used by the filtering logic for this filter.

Raised Exceptions:

• Exception - if an error occurs during activation.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
97

deactivate() : void

Deactivate the mechanisms used by the filtering logic for this filter.

Raised Exceptions:

• Exception - if an error occurs during deactivation.

filter(object : Object) : Object

Take the given Object and perform some type of filtering logic and operation upon it. It
returns the filtered Object.

Arguments:

• object - The Object to be filtered.

Raised Exceptions:

• Exception - if an error occurs during filtering.

isObjectModified() : boolean

Check if this filter modifies filtered objects. Return true if it does, False otherwise.
filter(object : Object) : Object

Take the given Object and perform some type of filtering logic and operation upon it. It
returns the filtered Object.

Arguments:

• object - The Object to be filtered.

Package Operations

setNextFilter(filter : Filter) : void

Set the next filter in the chain. This operation is used at filtering time to facilitate the
automatic execution of the next filter in the chain, if any exists.

• filter - The next filter in the chain.

FilterChain

A filter chain tracks and manages Filters that have been applied to an operation.

Public Operations

activate() : void

Activate the mechanisms used by the filtering logic for this filter chain.

Raised Exceptions:

• Exception - if an error occurs during activation.

deactivate() : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
98

Deactivate the mechanisms used by the filtering logic for this filter chain.

Raised Exceptions:

• Exception - if an error occurs during deactivation.

filter(object : Object) : Object

Take the given Object and perform some type of filtering logic and operation upon it. It
returns the filtered Object.

Arguments:

• object - The Object to be filtered.

Raised Exceptions:

• Exception - if an error occurs during filtering.

getFilterCount() : int

Returns the number of filters in the chain.
updateFilter(filterId : String, attributesToUpdate : Map<String, Object>) : void

Updates the specified attributes for the identified Filter.

Arguments:

• filterId - The identifier for the Filter to be updated.

• attributesToUpdate - The attributes to be updated.

isObjectModified() : boolean

Check if any of the filters in this chain modifies the filtered objects. Return true if one or
more filters in the chain do modify the objects, False otherwise.

Package Operations

appendFilter(filter : Filter) : int

Insert a Filter into the chain of Filters at the end of the chain. This method returns the
index of the appended filter.

Arguments:

• filter - The Filter to be inserted at the end of the chain.

insertFilter(filter : Filter, index : int) : int

Insert a Filter into the chain of Filters at a specific location. This method returns the new
total number of Filters.

Arguments:

• filter - The Filter to be inserted.

• index - The index to insert the new Filter at.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
99

removeFilter(filterId : String) : void

Remove the Filter with the given identifier.

Arguments:

• filterId - The identifier for the Filter to be removed.

removeFilter(index : int) : void

Remove the Filter at the given index in the filtering chain.

Arguments:

• index - The index of the Filter to be removed.

FilterChainContext

This context contains the implementation-specific attributes that describe a specific filter chain.
It is envisioned that some or all of the attributes may be used to tailor the behavior of the chain.

Public Operations

getFilterNameList() : List<String>

Retrieve the names of the filters to be used to make the filter chain.
getInputType() : String

Retrieve the identifier for the type of Object being passed to the first Filter as input.
getOutputType() : String

Retrieve the identifier for the type of Object being returned by the last Filter as output.
setFilterNameList(filterNames : List<String>) : void

Set the names of the filters to be used to make the filter chain.

• filterNames - The names of the filters to be used to make the filter chain.

setInputType(inputType : String) : void

Set the identifier for the type of Object being passed to the first Filter as input.

• inputType - The identifier for the type of Object being passed to the first Filter as
input.

setOutputType(outputType : String) : void

Set the identifier for the type of Object being returned by the last Filter as output.

• outputType - The identifier for the type of Object being returned by the last Filter
as output.

FilterContext

This context contains the implementation-specific attributes that describe a particular filter. It is
envisioned that some or all of the attributes may be used to tailor the behavior of the filter.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
100

Public Operations

getInputType() : String

Retrieve the identifier for the type of Object being passed to the Filter as input.
getModifiesObject() : boolean

Get the flag that tells whether or not the associated filter modifies filtered objects.
getOutputType() : String

Retrieve the identifier for the type of Object being returned by the Filter as output.
setInputType(inputType : String) : void

Set the identifier for the type of Object being passed to the Filter as input.

• inputType - The identifier for the type of Object being passed to the Filter as
input.

setModifiesObject(modifiesObject : boolean) : void

Set the flag that tells whether or not the associated filter modifies filtered objects.

• modifiesObject - The flag that tells whether or not the associated filter modifies
filtered objects.

setOutputType(outputType : String) : void

Set the identifier for the type of Object being returned by the Filter as output.

• outputType - The identifier for the type of Object being returned by the Filter as
output.

FilterManagementService

This service extends the Base Channel Service and is responsible for maintaining the registry of
filters to be used by actors and for creating orchestrated chains of these filters for use by actors
during filtering operations.

Public Operations

createFilterChain(sessionTrack : SessionTrack, orchestrationCtx :
FilterChainContext) : FilterChain

This method creates an orchestrated chain of filters based on the provided description of
the filtering operations to be undertaken.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• orchestrationCtx - The context that contains the description of the filtering
operations to be undertaken by the created chain of orchestrated filters.

Raised Exceptions:

• Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
101

dropFilters(sessionTrack : SessionTrack, filterIds : List<String>) : void

Drop the identified filters from the registry.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• filterIds - The identifiers of the filters to be removed from the registry.

Raised Exceptions:

• Exception

listRegisteredFilters() : List<FilterContext>

Retrieve the list of contexts that describe the registered filters.
registerFilters(sessionTrack : SessionTrack, filters : List<Filter>) : void

Add the provided filters to the registry.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• filters - The filters to be added to the registry.

Raised Exceptions:

• Exception

Typical Use

It is envisioned that this service will be used by actors to register filter implementations in order
to facilitate the sharing of information shaping capabilities. This registry also enables the
discovery of information shaping capabilities. This service is also used by actors to create
customized filter chains for filtering data. An actor uses the FilterChainContext to describe the
filtering operations they wish to occur. This service accepts that context, looks up the
corresponding filter instances, checks the proposed orchestration chain for validity, and returns
the formed orchestration chain if everything checks out. If a filter is not found or a validation
check fails, an exception is thrown.

Associated Diagrams

Use Cases

• (None.)

Activity Diagrams

• (None.)

Class Diagrams

• CD 0000 Phoenix IM Services

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
102

Sequence Diagrams

• (None.)

FilterManagementServiceConnector

This interface extends the Filter Management Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Filter Management Service)

FilterManagementServiceStub

This interface extends the Filter Management Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Filter Management Service)

Information Discovery

The information discovery group contains the interfaces that define and support the information
discovery capability defined by the Phoenix architecture. The information discovery interfaces
are:

• InformationDiscoveryService

• InformationDiscoveryServiceConnector

• InformationDiscoveryServiceContext

• InformationDiscoveryServiceStub

InformationDiscoveryService

The Information Discovery Service (IDS) extends the Base Channel Service and provides a
simple interface for "discovering" what information types are known to the Information
Management (IM) services and what services are supporting which types.

Public Operations

getSupportingServices(sessionTrack : SessionTrack, informationTypeName : String,
svcTypeExpression : ExpressionContext) : List<ServiceDescriptorContext>

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
103

Retrieve a set of contexts that describe the services that support the identified
information type and their available control channels. The returned contexts should
describe where to find the service and how to connect to it.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• informationTypeName - The information type to find supporting services for.

• svcTypeExpression - An expression to be applied to the service types of the
services found to be supporting the provided information type name.

Raised Exceptions:

• Exception

getTypeDefinitions(sessionTrack : SessionTrack, expression : ExpressionContext)
: List<InformationTypeContext>

Retrieve the type definitions whose information type names match the provided
expression.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• expression - The expression to be applied to the known information type names.

Raised Exceptions:

• Exception

Typical Use

This service is used in conjunction with other Phoenix services to provide a simple interface for
finding information and the services processing it.

Associated Diagrams

Use Cases

• UC 0000 Phoenix IM Capabilities

• UC 0003 Discovery (Information)

Activity Diagrams

• AD 0004 Discovery (Information)

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0002 Discovery (Information)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
104

Sequence Diagrams

• None.

InformationDiscoveryServiceConnector

This interface extends the Information Discovery Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Information Discovery Service)

InformationDiscoveryServiceContext

A service context specific to the Information Discovery Service.

Public Operations

None.

InformationDiscoveryServiceStub

This interface extends the Information Discovery Service, thereby inheriting and exposing all of
its methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Information Discovery Service)

Security

The security group contains the interfaces that define and support the Phoenix authorization
service. The security interfaces are:

• AuthorizationContext

• AuthorizationService

• AuthorizationServiceConnector

• AuthorizationResponse

• AuthorizationResponseType

• AuthorizationServiceStub

• MultipleAuthorizationContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
105

AuthorizationContext

This Context is used to provide the action, target, and any other information needed to submit a
request to the Authorization Service. The attributes will be used to determine whether or not a
specific actor is authorized to perform the specified action upon a particular target within the
architecture. This Context contains two standard attributes: action and target.

1. The action is the operation that has been requested.

2. The target is what entity, component, or piece of Information that is to be operated upon.

The abstract architecture lists some example values for each of these attributes, but the values
need to be determined by the implementation design team. As an example, they may be based
on some security policy implementation such as KAoS.

Public Operations

getAction() : Object

This method returns the action or operation that has been requested.

Example Actions

• ARCHIVE

• BROKER

• CONNECT

• CREATE

• DESTROY

• DISSEMINATE

• PERSIST

• QUERY

• SUBMIT

• SUBSCRIBE

getSessionId() : Object

Get the session identifier of the actor who will be performing the action being authorized.
getTarget() : Object

The target is what entity, component, or piece of managed information that is to be
operated upon.

Example Targets

• DATA_CHANNEL : BaseChannel

• INFORMATION : Information

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
106

• SERVICE : BaseService

• SESSION : SessionContext

setAction(action : Object) : void

Set the action that has been requested.

Arguments:

• action - The action that has been requested.

setSessionId(sessionId : Object) : void

Set the session identifier of the actor who will be performing the action being authorized.

Arguments:

• sessionId - The session identifier of the actor who will be performing the action
being authorized.

setTarget(target : Object) : void

Set the target (what entity, component, or piece of managed information that is to be
operated upon).

Arguments:

• target - The target (what entity, component, or piece of managed information
that is to be operated upon).

AuthorizationService

This service extends the Base Channel Service, thereby inheriting all its methods.

Actions within a SOA-based environment may be dependent upon some form of security policy or
restriction. This security authorization capability should be designed such that it may be a single
point of execution or a fully distributed and potentially uses a decentralized protocol. An
authorization could be requested for any operation by any service. An operation is defined by
this documentation as any action that is performed upon a set of targets by a set of actors.

Authorization is provided by a central or distributed service acting as a policy decision point for
the chosen implementing security policies. This service does not provide mechanisms for the
definition or capture of security policies due to the obvious differences in security policy
technologies. To provide such mechanisms would couple this abstract architecture too tightly to a
specific implementing policy engine. The process of authentication may be contained within an
authorization check undertaken sometime during the process of creating a new session and, as
such, no specific interface method has been defined for authentication operations.

Public Operations

isAuthorized(sessionTrack : SessionTrack, ctx : AuthorizationContext) :
AuthorizationResponse

Checks if an action is authorized for the given action, target, and actors. Returns the
AuthorizationResponse object that describes the result of the authorization check.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
107

• sessionTrack - The pedigree of the invokers for this method.

• ctx - The Context describing the operation being authorized.

Raised Exceptions:

• Exception

updatePolicy(sessionTrack : SessionTrack, policy : Object) : void

Update the policy that this Authorization Service reasons upon.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• policy - An Object to update the policy with. What this is and how it is utilized are
up to the Authorization Service implementations.

Raised Exceptions:

• Exception

Typical Use

This service is envisioned to be used by other services to authorize their operations before they
are undertaken. Within the Phoenix IM Services, it is typically assumed that any operation upon
information as well as any operations that result in the creation, updating, or destruction of
entities should first be authorized.

Associated Diagrams

Use Cases

• UC 0000 Phoenix IM Capabilities

• UC 0010 Authorization

Activity Diagrams

• AD 0014 Authorization

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0013 Authorization

Sequence Diagrams

• SQD 0011 Session Management (Creation & Destruction)

AuthorizationServiceConnector

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
108

This interface extends the Authorization Service interface, thereby exposing all of its methods on
the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Authorization Service)

AuthorizationResponse

This interface describes the result of an authorization operation by using the
AuthorizationResponseType enumeration (Authorized, Not Authorized, or Indeterminate). It
provides a framework for developers to utilize when they need to describe the results of the
authorization attempt. There can optionally be an array of reasons for the given response. The
response also describes the obligations that should be performed as well.

Public Operations

getReasons() : List<String>

Retrieve the listing of reasons for why the authorization attempt resulted in this type of
response.

getResponseType() : AuthorizationResponseType

Retrieve the response type identifier. Possible values are defined by the
AuthorizationResponseType enumeration.

Package Operations

addReason(reason : String) : void

Add a reason to this response.

Arguments:

• reason - The reason to add to this response.

setResponseType(responseType : AuthorizationResponseType) : void

Set the response type.

Arguments:

• responseType - The type of response. Possible values are defined by the
AuthorizationResponseType enumeration.

AuthorizationResponseType

Identifies the possible types of Authorization Responses defined by the Phoenix architecture.

Public Fields

AUTHORIZED

The operation is authorized for the requesting actor according to the currently specified
policy.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
109

INDETERMINATE

The Authorization Service is unable to determine if the operation is authorized for the
requesting actor.

NOT_AUTHORIZED

The operation is not authorized for the requesting actor based on the currently specified
policy.

AuthorizationServiceStub

This interface extends the Authorization Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Authorization Service)

MultipleAuthorizationContext

This context represents a container object for a set of operations to be authorized as a single
unit. This means that if one operation is not authorized or is indeterminate then the whole
operation set is marked as such.

Public Operations

addAuthorizationRequest(action : Object, target : Object, sessionId : Object) :
void

Add an authorization request to the set that represents the chain of operations to be
authorized as a single unit.

Arguments:

• action - The action for a specific authorization request in the chain.

• target - The target for a specific authorization request in the chain.

• sessionId - The session identifier for the actor who will be performing the action
being authorized.

getAuthorizationRequests() List<AuthorizationContext>

Retrieve the set of authorization requests that represents the chain of operations to be
authorized.

Service Brokering

The service brokering group contains the interfaces that define and support Phoenix’s service
brokering service. The service brokering interfaces are:

• ServiceBrokeringQueryContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
110

• ServiceBrokeringService

• ServiceBrokeringServiceConnector

• ServiceBrokeringServiceContext

• ServiceBrokeringServiceStub

• ServiceDescriptorSchema

ServiceBrokeringQueryContext

A context used specifically for Service Brokering operations.

Public Operations

getExpression() : ExpressionContext

Retrieve the expression for this query.
listStubProtocols() : List<String>

List the control channel protocols whose corresponding stubs this query context is
requesting.

setExpression(expression : ExpressionContext) : void

Set the expression for this query.

Arguments:

• expression - The expression for this query.

setStubProtocols(protocols : List<String>) : void

Set the control channel protocols whose corresponding stubs this query context is
requesting.

Arguments:

• protocols - The control channel protocols whose corresponding stubs this query
context is requesting.

ServiceBrokeringService

This service extends the Base Channel Service and is responsible for maintaining a registry of
service descriptions associated with service control stubs. Control stubs are the entities used by
Phoenix actors to interact with services. Service descriptions may include fields such as what
specific information types a particular service supports or where it is physically located. The
control stub returned by a service brokering operation is used to invoke control methods for such
operations as setting up information channels.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
111

brokerForServices(sessionTrack : SessionTrack, constraints :
ServiceBrokeringQueryContext) : List<ServiceDescriptorContext>

Broker for a set of services that satisfy the specified constraints. This method returns a
list of matching service descriptors.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• constraints - The defined criteria used to broker for matching services.

Raised Exceptions:

• Exception

getServiceDescriptorSchema(sessionTrack : SessionTrack, serviceType : String) :
ServiceDescriptorSchema

Retrieve the schema being used by the Service Brokering Service to describe the
contents of a service descriptor for a specific service type.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• serviceType - The identifier of the descriptor schema to retrieve.

Raised Exceptions:

• Exception

registerService(sessionTrack : SessionTrack, svcDescriptorCtx :
ServiceDescriptorContext) : void

Register the given description for the specified service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• svcDescriptorCtx - The Context object containing the description of the service to
be registered.

Raised Exceptions:

• Exception

Typical Use

This service provides a central registry for Phoenix services. It may be used in conjunction with
any or all of the other Phoenix services.

Associated Diagrams

Use Cases

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
112

• UC 0000 Phoenix IM Capabilities

• UC 0004 Brokering (Service)

Activity Diagrams

• AD 0007 Brokering (Service)

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0005 Brokering (Service)

Sequence Diagrams

• None.

ServiceBrokeringServiceConnector

This interface extends the Service Brokering Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Service Brokering Service)

ServiceBrokeringServiceContext

This service's Context contains the listing of ServiceContext instances describing all services
registered the Service Brokering Service. This is the listing that is brokered over to find a service
or services for an actor wishing to utilize some subset of capabilities provided by the IM Services.
The Service Broker Service Context contains a single required attribute, registeredServices that
contains a list of Service Contexts for all registered services. These Service Contexts may be
modified versions of those maintained by their parent services.

Public Operations

addRegisteredService(ctx : ServiceContext) : void

Add a service to the list of registered services.

Arguments:

• ctx - The ServiceContext that describes the service that is being registered.

getRegisteredServices() : List<ServiceContext>

Returns the list of the currently registered ServiceContexts.
removeRegisteredService(serviceId : String) : void

Remove the specified service from the list of registered services.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
113

• serviceId - The identifier for the service to be removed.

ServiceBrokeringServiceStub

This interface extends the Service Brokering Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Service Brokering Service)

ServiceDescriptorSchema

An interface that defines a container object for the schemas used by the Service Brokering
Service to describe Phoenix services. These schemas are deliberately not tied to any specific
implementing technology to uphold the abstract nature of this architecture.

Public Operations

getDefinitionDocument() : Object

Retrieve the actual schema from this container object object that represents the
description for a specific type of service.

Package Operations

setDefinitionDocument(definitionDoc : Object) : void

Set the actual schema for this container object that represents the description for a
specific type of service.

• definitionDoc - The actual schema for this container object that represents the
description for a specific type of service.

Session Management

The session management group contains the interfaces that define the session management
service for the Phoenix architecture. The session management interfaces are:

• SessionManagementService

• SessionManagementServiceConnector

• SessionManagementServiceContext

• SessionManagementServiceStub

SessionManagementService

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
114

This service extends the Base Channel Service and provides the necessary methods for creating
and maintaining actor sessions within the Phoenix architecture. When this service is included in a
deployed implementation, each and every actor must register a valid session before they are
able to utilize any of the resident services. A service that is implemented to support standalone
operations must provide this functionality internally (i.e. implement this interface) along with its
main service functionality. A standalone service may be implemented in such a way that the
service accommodates the fact that there is no notion of session maintained and that it is on its
own as far as session management and validation is concerned. What a standalone service
actually does in this case is up to the implementation designers, it may ignore the notion of
sessions entirely or it may implement some home-grown solution for session management.

Public Operations

createSession(actorCtx : ActorContext, brokerBack : boolean) : Object

Create and maintain session state reflecting an actor's interactions with the IM services.
Returns the identifier for the session that was created.

Arguments:

• actorCtx - The Context object describing the actor for whom the session will be
created for.

• brokerBack - Flag telling this service whether the actor has requested a
ServiceBinding object for the Service Brokering Service or not.

Raised Exceptions:

• Exception

destroySession(sessionTrack : SessionTrack, sessionId : Object) : void

Destroy the specified session.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• sessionId - The identifier for the session to be destroyed.

Raised Exceptions:

• Exception

getDistinctActors(sessionTrack : SessionTrack) : List<ActorContext>

This is a listing of the distinct actor ID's for all actors that have registered Sessions with
the Session Management Service. Returns a list of ActorContext objects that describe the
distinct actors that have created IM session(s).

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
115

getSessionAttributeValue(sessionTrack : SessionTrack, sessionId : Object,
attributeName : Object) : void

Retrieve a specific attribute for an identified session.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• sessionId - The identifier of the session whose Session Context is going to be
modified.

• attributeName - The name of the session attribute to be set.

• attributeValue - The new value for the specified session attribute.

Raised Exceptions:

• Exception

getSessionContext(sessionTrack : SessionTrack, sessionId : Object) :
SessionContext

This method retrieves the SessionContext for the given session identifier. Returns the
SessionContext object that describes the session identified by the given identifier.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• sessionId - The identifier of the session whose Session Context is going to be
retrieved.

Raised Exceptions:

• Exception

getSessionContexts(sessionTrack : SessionTrack, criteria : Object) :
List>SessionContext<

Retrieve a set of sessions that share some criteria.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• criteria - The search criteria that all returned session contexts must match. This is
an object to allow implementations to choose their own way of characterizing and
searching the session contexts.

Raised Exceptions:

• Exception

listRegisteredSessionIds(sessionTrack : SessionTrack) : List<String>

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
116

Raised Exceptions:

• Exception

setSessionAttributeValue(sessionTrack : SessionTrack, sessionId : Object,
attributeName : String, attributeValue : Object) : void

Set a specific attribute for an identified session.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• sessionId - The identifier of the session whose Session Context is going to be
modified.

• attributeName - The name of the session attribute to be set.

• attributeValue - The new value for the specified session attribute.

Raised Exceptions:

• Exception

Typical Use

The Session Management Service provides a session management capability similar to those
provided by a web server.

Associated Diagrams

Use Cases

• UC 0000 Phoenix IM Capabilities

• UC 0011 Session Management

Activity Diagrams

• AD 0016 Session Management (Administrator)

• AD 0017 Session Management (User)

Class Diagrams

• CD 0000 Phoenix IM Services

• CD 0014 Session Management

Sequence Diagrams

• SQD 0011 Session Management (Creation & Destruction)

SessionManagementServiceConnector

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
117

This interface extends the Session Management Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Session Management Service)

SessionManagementServiceContext

This context contains the list of all active Sessions and the metadata describing them. It also
contains the maximum number of active Sessions allowed by this service. This context is used to
maintain the state of the active Sessions within the architecture at any given time. The Session
Management Service Context contains four attributes: activeSessions, maxNumberOfSessions,
numberOfSessions, and defaultSessionTTL.

1. The activeSessions attribute contains a list of all Session objects for the currently active
sessions.

2. The maxNumberOfSessions is the maximum number of supported sessions.

3. The numberOfSessions is the current number of active sessions being managed by the
associated Session Management Service.

4. The defaultSessionTTL is the amount of time, units to be determined by implementation,
for sessions to stay alive after they have been created or active and then gone inactive.
In other words, if a session is idle for this specified amount of time, it may be garbage
collected or invalidated depending upon the implementation.

Public Operations

getActiveSessions() : List<SessionContext>

Retrieve the list of currently active session contexts.
getDefaultSessionTimeToLive() : long

Retrieve the default time limit for this session to stay alive. The implementation of the
architecture must determine what this value should be.

getMaxSupportedSessions() : long

Retrieve the maximum number of concurrent sessions that can be maintained by the
associated implementation.

getNumberOfSessions() : long

Retrieve the number of currently active sessions being tracked by the associated
implementation of the Session Management Service.

SessionManagementServiceStub

This interface extends the Session Management Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Session Management Service)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
118

Subscription

The subscription group contains the interfaces that define the constructs used to support edge
actor subscription operations:

• BrokeringResultType

• ConsumerReport

• SubscriptionContext

• SubscriptionService

• SubscriptionServiceConnector

• SubscriptionServiceContext

• SubscriptionServiceStub

BrokeringResultType

This enumeration describes the possible results of an information brokering operation.

Public Fields

CONSUMER_LIST

This flag represents the expression registrant's desire to receive consumer hit lists for
their submitted information via an Event Channel.

INFORMATION

This flag represents the expression registrant's desire to receive information matching the
submitted expression via a Dissemination Service.

ConsumerReport

This enumeration lists the possible types of consumer lists that can be understood by the
Phoenix IM Services.

Public Fields

IN_BAND_ONLY

Identifies a list that contains only in-band consumers. The term "in-band" applies to
consumers who are using the Phoenix channels to receive information from the IM
Services.

OUT_OF_BAND_ONLY

Identifies a list that contains only out-of-band consumers. The term "out-of-band" applies
to consumers who are not using the Phoenix channel to receive information from the IM
Services. These consumers handle their own data reception needs.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
119

ALL

Identifies a list that contains both in-band and out-of-band consumers.

SubscriptionContext

This class is used specifically for registering expressions with the Information Brokering Service
as subscriptions. Information brokering is the concurrent process of filtering the information that
specific consumers are interested in from a larger set of information as the information is made
available to the IM Services.

Public Operations

addConsumerChannel(consumer : ChannelContext) : void

Add a consumer channel to receive the results of this subscription.

Arguments:

• consumer - The context describing the consumer channel to receive the results of
this subscription.

addExpression(expression : ExpressionContext) : void

Add an expression to this subscription.

Arguments:

• expression - The expression to add to this subscription.

addInformationTypeName(typeName : String) : void

Add an information type name for this subscription to be applied to.

Arguments:

• infoTypeName - The information type name that this subscription will be applied
to.

getBrokeringResultType() : BrokeringResultType

Retrieve the brokering result type flag.
getConsumerReportType() : ConsumerReport

Retrieve the type of ConsumerReport, if any, to be returned as a result of a brokering
operation upon the associated expression.

getFirstMatchFoundTime() : long

Retrieve the amount of time the consumer is willing to listen for the first result that
matches the associated subscription.

listConsumerChannels() : List<ChannelContext>

Retrieve the entire list of consumer channels bound to this subscription.
listExpressions() : List<ExpressionContext>

Retrieve the entire list of expressions for this subscription.
listInformationTypeNames() : List<String>

Retrieve the information type names that this subscription applies to.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
120

setBrokeringResultType(resultType : BrokeringResultType) : void

Set the brokering result type flag.

Arguments:

• resultType - The brokering result type flag.

setConsumerReportType(reportType : ConsumerReport) : void

Set the type of ConsumerReport, if any, to be returned as a result of a brokering
operation upon the associated expression.

Arguments:

• reportType - The type of ConsumerReport, if any, to be returned as a result of a
brokering operation upon the associated expression.

setFirstMatchFoundTime(fmft : long) : void

Set the amount of time the consumer is willing to listen for the first result that matches
the associated subscription.

Arguments:

• fmft - The amount of time the consumer is willing to listen for the first result that
matches the associated subscription.

SubscriptionService

This service extends the Base Channel Service and manages subscriptions for information. This
edge-facing service coordinates subscription registration across a set of Information Brokering
Services.

Public Operations

dropSubscriptions(sessionTrack : SessionTrack, subscriptionIds : List<String>) :
void

This method is used to drop subscriptions.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• subscriptionIds - The identifiers of the subscriptions to be dropped.

Raised Exceptions:

• Exception

registerSubscriptions(sessionTrack : SessionTrack, subscriptionContexts :
List<SubscriptionContextInterface>) : List<String>

This method is used to register subscriptions for evaluation. This method returns the
registered subscription identifiers.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
121

• sessionTrack - The pedigree of the invokers for this method.

• subscriptionContexts - The Context objects describing the expressions to be
registered.

Raised Exceptions:

• Exception

resumeSubscriptions(sessionTrack : SessionTrack, subscriptionIds : List<String>)
: void

Resume evaluation of the identified subscriptions.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• subscriptionIds - The identifiers of the subscriptions to resume evaluation over.

Raised Exceptions:

• Exception

suspendSubscriptions(sessionTrack : SessionTrack, subscriptionIds :
List<String>) : void

Temporarily suspend evaluation of the identified subscriptions.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• subscriptionIds - The identifiers of the subscriptions to suspend evaluation over.

Raised Exceptions:

• Exception

updateSubscription(sessionTrack : SessionTrack, subscriptionId : String,
subscriptionContext : SubscriptionContext) : void

Update the identified subscription.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• subscriptionId - The identifier of the subscription to be updated.

• subscriptionContext - The context containing the new settings for the
subscription.

Raised Exceptions:

• Exception

Typical Use

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
122

This service is used in conjunction with a set of Information Brokering Services to provide load
balancing for subscription expression evaluation operations.

Associated Diagrams

Use Cases

• UC 0000 Phoenix IM Capabilities

Activity Diagrams

•

Class Diagrams

• CD 0000 Phoenix IM Services

Sequence Diagrams

•

SubscriptionServiceConnector

This interface extends the Subscription Service interface, thereby exposing all of its methods on
the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Subscription Service)

SubscriptionServiceContext

An interface for a context for the Subscription Service.

Public Operations

None.

SubscriptionServiceStub

This interface extends the Subscription Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Subscription Service)

Streams Service Interfaces

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
123

Stream services are those that manage streams and actor's interactions with streams.

• Connection

• Stream Brokering

• Stream Discovery

• Stream Repository

Connection

The connection group contains the interfaces that define and support the multiplexed and
demultiplexed dissemination capability of the Phoenix architecture. The connection interfaces
are:

• ConnectionService

• ConnectionServiceConnector

• ConnectionServiceContext

• ConnectionServiceStub

• ConnectionGroup

• ConnectionGroupContext

ConnectionService

The Connection Service extends the Base Channel Service and is responsible for taking frames,
information, or bytes, from registered sources and delivering them to registered consumers.
Sources and consumers register with the service, and are multiplexed or demultiplexed through
a connection group. A connection group is the structure which encapsulates a group of inputs
and a group of outputs, for data to be forwarded between.

Public Operations

addConnectionGroupConsumers(session : SessionTrack, connectionGroupId : String,
consumerIds : List<String>) : void

Adds the specified consumer endpoints (referenced by consumerIds) to the list of outputs
for the connection group associated with the connectionGroupId parameter.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupId - The connection group identifier for the connection group to
add a consumer to.

• consumerIds - The identifiers of the consumers to be added.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
124

Raised Exceptions:

• Exception

addConnectionGroupSources(session : SessionTrack, connectionGroupId : String,
sourceIds : List<String>) : void

Adds the specified source (referenced by sourceId) to the list of inputs for the connection
group associated with the connectionGroupId parameter.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupId - The connection group identifier for the connection group to
add a source to.

• sourceIds - The identifiers of the sources to be added.

Raised Exceptions:

• Exception

deregisterConnectionGroups(session : SessionTrack, connectionGroupIds :
List<String>) : void

Removes the specified connection groups from the list of registered connection groups.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupIds - The connection group identifiers to be deregistered.

Raised Exceptions:

• Exception

deregisterConsumers(session : SessionTrack, consumerIds : List<String>) : void

Removes the specified consumers from the existing registered consumers.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• consumerIds - The consumer identifiers for the consumers to be deregistered.

Raised Exceptions:

• Exception

deregisterSources(session : SessionTrack, sourceIds : List<String>) : void

Removes the specified sources from the existing registered sources.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
125

• sourceIds - The source identifiers for the sources to be deregistered.

Raised Exceptions:

• Exception

getAllConnectionGroups(session : SessionTrack) : List<ConnectionGroupContext>

Retrieve a listing of all the connection groups currently registered with this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

getAllConsumers(session : SessionTrack) : List<ChannelContext>

Retrieve a listing of all of the consumers currently registered with this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

getAllSources(session : SessionTrack) : List<ChannelContext>

Retrieve a listing of all of the sources currently registered with this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

getConnectionGroupConsumers(session : SessionTrack, connectionGroupId : String)
: List<ChannelContext>

Obtains a channel list of all of the current consumers for a specific connection group.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupId - The identifier of the connection group which the consumers
are associated with.

Raised Exceptions:

• Exception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
126

getConnectionGroupContext(session : SessionTrack, connectionGroupId : String) :
ConnectionGroupContextInterface

Retrieve a listing of the identifiers for all of the connection groups currently registered
with this service. This method returns a context that contains the requisite data.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupId - The identifier of the connection group.

Raised Exceptions:

• Exception

getConnectionGroupSources(session : SessionTrack, connectionGroupId : String) :
List<ChannelContext>

Obtains a channel list of all of the current sources for a specific connection group.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupId - The identifier of the connection group which the sources are
associated with.

Raised Exceptions:

• Exception

isConnectionGroupRegistered(session : SessionTrack, connectionGroupId : String)
: boolean

Check if the identified connection group is registered with this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupId - The identifier of the connection group.

Raised Exceptions:

• Exception

isConsumerRegistered(session : SessionTrack, consumerId : String) : boolean

Check if the identified consumer is registered with this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• consumerGroupId - The identifier of the consumer.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
127

• Exception

isConsumerRegisteredWithConnectionGroup(session : SessionTrack,
connectionGroupId : String, consumerId : String) : boolean

Check if the identified consumer is registered with a specific connection group on this
service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupId - The identifier of the connection group.

• consumerId - The identifier of the consumer.

Raised Exceptions:

• Exception

isSourceRegistered(session : SessionTrack, sourceId : String) : boolean

Check if the identified source is registered with this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• sourceId - The identifier of the source.

Raised Exceptions:

• Exception

isSourceRegisteredWithConnectionGroup(session : SessionTrack, connectionGroupId
: String, sourceId : String) : boolean

Check if the identified source is registered with a specific connection group on this
service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupId - The identifier of the connection group.

• sourceId - The identifier of the source.

Raised Exceptions:

• Exception

registerConnectionGroups(session : SessionTrack, connectionGroupId : String,
groupContexts : List<ConnectionGroupContext>) : List<String>

Register the connection group on this service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
128

• sessionTrack - The pedigree of the invokers for this method.

• groupContexts - The connection group contexts

Raised Exceptions:

• Exception

registerConsumers(session : SessionTrack, connectionGroupId : String,
channelContexts : List<ChannelContext>) : List<String>

Registers consumers to receive data. This method returns the identifiers for the
registered consumers.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelContexts - The list of ChannelContexts that describe the consumers to be
registered.

Raised Exceptions:

• Exception

registerSources(session : SessionTrack, connectionGroupId : String,
channelContexts : List<ChannelContext>) : List<String>

Registers sources to stream data. This method returns the identifiers for the newly
registered sources.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• channelContexts - The list of ChannelContexts that describe the sources to be
registered.

Raised Exceptions:

• Exception

removeConnectionGroupConsumers(session : SessionTrack, connectionGroupId :
String, consumerIds : List<String>) : void

Drops the specified consumers referenced by consumerIds from the list of outputs for the
connection group associated with the connectionGroupId parameter.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupId - The identifier of the connection group.

• consumerIds - The list of consumers to be removed from membership in the
connection group.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
129

• Exception

removeConnectionGroupSources(session : SessionTrack, connectionGroupId : String,
sourceIds : List<String>) : void

Drops the specified sources referenced by sourceIds from the list of inputs for the
connection group associated with the connectionGroupId parameter.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupId - The identifier of the connection group.

• sourceIds - The list of sources to be removed from membership in the connection
group.

Raised Exceptions:

• Exception

resetConnectionGroups(session : SessionTrack, connectionGroupIds : List<String>)
: void

Drops all sources and consumers from the connection group, but keeps the connection
group registered with the service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• connectionGroupIds - The identifiers of the connection groups to reset.

Raised Exceptions:

• Exception

resetConsumers(session : SessionTrack, consumerIds : List<String>) : void

Drops all connection group connections with the associated consumers, but keeps the
consumer endpoints registered with the service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• consumerIds - The identifiers of the consumers to reset.

Raised Exceptions:

• Exception

resetSources(session : SessionTrack, sourceIds : List<String>) : void

Drops all connection group connections with the associated sources, but keeps the source
endpoints registered with the service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
130

• sessionTrack - The pedigree of the invokers for this method.

• sourceIds - The identifiers of the sources to reset.

Raised Exceptions:

• Exception

Typical Use

This service can be used by itself to combine source feeds or to perform scatter/gather signaling
to consumers. It can also be used as a disseminator for the StreamBrokering Service, which
wraps much of the functionality in order to manage streams. The purpose of the service is to
manage source and consumer connections into functional disseminators which are fixed until
reorganized, rather than have connections dynamically managed at the time an information
object is flowing through the services for processing. The connections are essentially 'pre-
brokered', which is more optimal for streams, and removes unnecessary overhead.

Associated Diagrams

Class Diagrams

• CD 0000 Phoenix IM Services

ConnectionServiceConnector

This interface extends the Connection Service interface, thereby exposing all of its methods on
the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Connection Service)

ConnectionServiceContext

The Context for the Connection Service holds the list of registered consumers, sources
(publishers), and connection groups. The list of registeredConsumers contains the Contexts that
describe the end points for all consumers who have been registered with the associated
Disseminator Service. The maxNumberOfConsumers is the maximum number of supported
consumers. The maxNumberOfSources is the maximum number of supported sources. The
maxNumberOfConnectionGroups is the maximum number of supported connection groups this
service will support. The numberOfRegisteredConsumers is the current number of consumers
who have registered with the associated Connection Service. The numberOfRegisteredSources is
the current number of sources who have registered with the associated Connection Service. The
numberOfRegisteredConnectionGroups is the current number of connection groups who have
registered with the associated Connection Service.

Public Operations

addConnectionGroup(connectionGroup : ConnectionGroup) : void

Add a registered connection group.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
131

Arguments:

• connectionGroup - The ConnectionGroup to add as a member of the service.

addConnectionGroupConsumer(connectionGroupId : String, consumerId : String) :
void

Map a registered consumer connection to a registered connection group.

Arguments:

• connectionGroupId - The ConnectionGroup identifier to link the consumer to.

• consumerId - The consumer identifier for the consumer to route data from the
connection group to.

addConnectionGroupSource(connectionGroupId : String, sourceId : String) : long

Map a registered source connection to a registered connection group.

Arguments:

• connectionGroupId - The ConnectionGroup identifier to link the source to.

• sourceId - The source identifier for the source from which to route data.

addRegisteredConsumer(consumerIdentifier : String, consumerChannelContext :
ChannelContext) : void

Add a registered consumer's information to the service context.

Arguments:

• consumerIdentifier - The identifier for the consumer to be added.

• consumerChannelContext - The output channel context for the consumer.

Raised Exceptions:

• Exception

addRegisteredSource(sourceIdentifier : String, sourceChannelContext :
ChannelContext) : void

Add a registered source's information to the service context.

Arguments:

• sourceIdentifier - The identifier for the source to be added.

• sourceChannelContext - The input channel context for the source.

Raised Exceptions:

• Exception

getConnectionGroup(connectionGroupId : String) : ConnectionGroup

Retrieve the connection group by id.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
132

Arguments:

• connectionGroupId - The identifier for the connection group to be retrieved.

getConnectionGroups() : Map <String, ConnectionGroup>

Retrieve the set of currently registered connection groups.
getConsumersConnectionGroups() : Map <String, List<ConnectionGroup>>

Retrieve the set of currently registered connection groups according to their consumer.
getMaxSupportedConnectionGroups() : long

Retrieve the theoretical maximum number of concurrent connection groups that the
associated parent service can support.

getMaxSupportedConsumers() : long

Retrieve the theoretical maximum number of concurrent consumers that the associated
parent service can support.

getMaxSupportedSources() : long

Retrieve the theoretical maximum number of concurrent sources that the associated
parent service can support.

getNumberOfRegisteredConnectionGroups() : long

Retrieve the current number of registered connection groups.
getNumberOfRegisteredConsumers() : long

Retrieve the current number of registered consumers.
getNumberOfRegisteredSources() : long

Retrieve the current number of registered sources.
getRegisteredConsumers()() : Map <String, ChannelContext>

Retrieve the set of currently registered consumers.
getRegisteredSources()() : Map <String, ChannelContext>

Retrieve the set of currently registered sources.
getSourcesConnectionGroups() : Map <String, List<ConnectionGroup>>

Retrieve the set of currently registered connection groups according to their source.
removeConnectionGroup(connectionGroupId : String) : ConnectionGroup

Remove the identified connection group.

Arguments:

• connectionGroupId - The identifier for the connection group to be removed.

removeConnectionGroupConsumer(connectionGroupId : String, consumerId : String) :
boolean

Remove the registered consumer from the connection group.

Arguments:

• connectionGroupId - The identifier for the connection group to remove a
consumer from.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
133

• consumerId - The identifier for the consumer to remove.

removeConnectionGroupSource(connectionGroupId : String, sourceId : String) :
boolean

Remove the registered source from the connection group.

Arguments:

• connectionGroupId - The identifier for the connection group to remove a
consumer from.

• sourceId - The identifier for the source to remove.

removeRegisteredConsumer(consumerId : String) : ChannelContext

Remove the identified consumer's information from the list of registered consumers.

Arguments:

• consumerId - The identifier for the consumer to remove.

removeRegisteredSource(sourceId : String) : ChannelContext

Remove the identified source's information from the list of registered sources.

Arguments:

• sourceId - The identifier for the source to remove.

setMaxSupportedConnectionGroups(max : long) : void

Set the maximum number of concurrently supported connection groups for this service.

Arguments:

• max - The maximum number of concurrently supported connection groups for this
service.

setMaxSupportedConsumers(max : long) : void

Set the maximum number of concurrently supported consumers for this service.

Arguments:

• max - The maximum number of concurrently supported consumers for this
service.

setMaxSupportedSources(max : long) : void

Set the maximum number of concurrently supported sources for this service.

Arguments:

• max - The maximum number of concurrently supported sources for this service.

ConnectionServiceStub

This interface extends the Connection Service, thereby inheriting and exposing all of its methods
on the stub side of the Phoenix control channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
134

Public Operations

(Inherited from the Connection Service)

ConnectionGroup

A Connection Group. A Connection Group contains a context and some type of structure for
managing source and consumer memberships. A Connection Group, simplistically, is a set of
source channels and a set of consumer channels, all tied together in membership for the purpose
of multiplexing or de-multiplexing.

Connection Group allows for subclasses to type the input channels and output channels. So some
extensions could define the channels as a channel-wrapped buffer, and others could use the
transport itself. These are typed as 'InputChannel' and 'OutputChannel' 'InChannel' - The input
channel format for the application level source members. 'OutChannel' - The output channel
format for the application level consumer members.

Public Operations

getConnectionGroupContext() : ConnectionGroupContext

Retrieve the connection group context, which contains the id and attributes of the
connection group.

getConnectionGroupId() : String

Retrieve the connection group unique identifier.
reset() : void

Reset the connection group. This will remove all of the sources and consumers for this
connection group.

Raised Exceptions:

• ChannelException

setConnectionGroupContext(connectionGroupCxt : ConnectionGroupContext) : void

Set the ConnectionGroupContext.

Arguments:

• connectionGroupCxt - The connection group context, which contains metadata
regarding the setup of the multiplexing/de-multiplexing

setConnectionGroupId(connectionGroupId : String) : void

Set the connection group unique identifier.

Arguments:

• connectionGroupId - The identifier for the connection group.

ConnectionGroupContext

A Connection Group Context. Is the container for configuration of a connection group.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
135

Public Operations

getConnectionGroupChannelType() : ChannelType

Get the connection group channel type, which all of the sources and sinks for this
connection group must comply with.

getConnectionGroupId() : String

Retrieve the connection group unique identifier.
isManyConsumersAllowed() : String

Checks whether the consumers are forced to be One or Many.
isManySourcesAllowed() : String

Checks whether the sources are forced to be one or many.
setConnectionGroupChannelType(channelType : ChannelType) : void

Set the connection group channel type.

Arguments:

• channelType - The channel type for all associated sources and consumers.

setConnectionGroupId(id : String) : void

Set the connection group unique identifier.

Arguments:

• id - The identifier for the connection group.

setManyConsumersAllowed(flag : boolean) : void

Determines whether the consumers are forced to be one or many.

Arguments:

• id - Whether or not more than one consumer is allowed for this connection group

setManySourcesAllowed(flag : boolean) : void

Determines whether the sources are forced to be one or many.

Arguments:

• id - Whether or not more than one source is allowed for this connection group

Stream Brokering

The streambrokering group contains the interfaces that define and support the stream brokering
and registration/management capability of the Phoenix architecture. The streambrokering
interfaces are:

• AttributeType

• StreamBrokeringServiceConnector

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
136

• StreamBrokeringServiceContext

• StreamBrokeringService

• StreamBrokeringServiceStub

• StreamContext

• StreamHeaderAttribute

• StreamHeader

• StreamSubscriptionContext

AttributeType

This enumeration contains the possible types of attributes for stream header attributes defined
by the Phoenix architecture.

Public Fields

INT

Base Primitive, integer value type.
SHORT

Base Primitive, short value type.
DOUBLE

Base Primitive, double value type.
FLOAT

Base Primitive, float value type.
LONG

Base Primitive, long value type.
STRING

Base Primitive, string value type.
BYTE

Base Primitive, byte value type.
BOOLEAN

Base Primitive, boolean value type.

StreamBrokeringServiceConnector

This interface extends the Stream Brokering Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
137

(Inherited from the Stream Brokering Service)

StreamBrokeringServiceContext

The service context specific to the Stream Brokering Service. It is the manager of the stream,
stream expression, and contributor membership.

Public Operations

addConnectionServiceAssociation(connectionService : ConnectionServiceStub) :
void

Add a connection service association for the use of the stream brokering service.

Arguments:

• connectionService - The ConnectionServiceStub The connection service stub to
add to the list of available connection service associations.

Raised Exceptions:

• Exception

addContributorContext(contributorId : String, channelContext : ChannelContext) :
void

Add a contributor channel context to those held by this service.

Arguments:

• contributorId - The id of the contributor to which the context belongs.

• channelContext - The context to add to our listings.

addStreamContext(streamId : String, streamContext : StreamContext) : void

Add a stream context to those held by this service.

Arguments:

• streamId - The stream context to add to our listings.

• streamContext - The stream context to add to our listings.

addStreamSubscriptionContext(subContextId : String, subContext :
StreamSubscriptionContext) : void

Add a stream subscription context to those held by this service.

Arguments:

• subContextId - The id of the stream subscription to which the context belongs.

• subContext - The context to add to our listings.

getAvailableConnectionServices() : List<ConnectionServiceStub>

Get the list of all available connection services which we can route streams through.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
138

Raised Exceptions:

• Exception

getContributorContexts() : List<ChannelContext>

Get all of the contributor channel contexts held by this service.
getStreamContext(streamContextId : String) : StreamContext

Get the stream context referenced by the passed identifier.

Arguments:

• streamContextId - The stream context identifier..

getStreamContexts() : List<StreamContext>

Get the stream subscription context referenced by the passed identifier.
getStreamSubscriptionContext(streamSubscriptionContextId : String) :

StreamSubscriptionContext

Get the stream subscription context referenced by the passed identifier.

Arguments:

• streamSubscriptionContextId - The stream subscription context identifier.

getStreamSubscriptionContexts() : List<StreamSubscriptionContext>

Get the stream subscription context referenced by the passed identifier.
removeConnectionServiceAssociation(csStub : ConnectionServiceStub) : boolean

Remove a connection service association from the list of those available for use by the
stream brokering service.

Arguments:

• csStub - The Connection Service Stub to remove.

Raised Exceptions:

• Exception

removeContributorChannelContext(contributorId : String) : ChannelContext

Remove the channel context referenced by the passed contributor identifier.

Arguments:

• contributorId - The Channel Context to remove.

removeStreamContext(streamId : String) : StreamContext

Remove the stream context referenced by the passed parameter.

Arguments:

• streamId - The stream id referencing the stream context to be removed.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
139

removeStreamSubscriptionContext(streamSubscriptionId : String) :
StreamSubscriptionContext

Remove the stream subscription context referenced by the passed parameter.

Arguments:

• streamId - The stream subscription id referencing the stream subscription to be
removed.

setAvailableConnectionServices(serviceList : List<ConnectionServiceStub>) : void

Set the list of all available connection services which we can route streams through.

Arguments:

• serviceList - The connection services available for use by this service.

Raised Exceptions:

• Exception

StreamBrokeringService

The Stream Brokering Service interface extends the Base Channel Service interface and offers
the capability of registering a stream to stream producers, and subscribing to streams to
consumers. The Stream Brokering Service wraps the functionality of Connection Service with
Stream administration. Membership of streams, including their publication source's metadata and
identity, consumers using stream-based expressions, and the registration of the stream
definition itself, are all part of the Stream paradigm for this service. Data does not flow through
this service (that is routed through a connection service) but the control and management
operations for a stream are administered through this service.

Public Operations

deregisterStreamContributor(sessionTrack : SessionTrack, streamId : String,
contributorId : String) : void

Deregister a stream contributor from a stream.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamId - The contributorId to deregister from a stream.

• contributorId - The stream which the contributor is deregistering from.

Raised Exceptions:

• Exception

deregisterStreams(sessionTrack : SessionTrack, streamIds : List<String>) : void

Deregister a list of specified streams from the service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
140

• sessionTrack - The pedigree of the invokers for this method.

• streamIds - The stream ids of the Streams to deregister from this service.

Raised Exceptions:

• Exception

dropStreamSubscriptions(sessionTrack : SessionTrack, streamSubscriptionIds :
List<String>) : void

Drop the specified list of stream expressions as specified in the list by their stream
expression ids. Drop means to completely remove. Suspend is temporary, but drop is
permanent, unless the expression is added again.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamSubscriptionIds - The Stream expression context identifiers for the
expressions to drop.

Raised Exceptions:

• Exception

getAllStreamContexts(sessionTrack : SessionTrack) : List<StreamContext>

Get the list of streams registered with this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

getAllStreamSubscriptionContexts(sessionTrack : SessionTrack) :
List<ExpressionContext>

Get the list of stream expressions registered with this service.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

getAllRegisteredStreamContributors(sessionTrack : SessionTrack) :
List<ChannelContext>

Get the list of stream contributor channel contexts registered with this service.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
141

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

getStreamContext(sessionTrack : SessionTrack, streamId : String) : StreamContext

Get the stream context for a specific stream. This allows someone to check the attributes
of a stream before deciding to subscribe to it.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamId - The stream id for the StreamContext to return

Raised Exceptions:

• Exception

getStreamSubscriptionContext(sessionTrack : SessionTrack, streamSubscriptionId :
String) : ExpressionContext

Get the stream expression context associated with a subscription which was submitted
previously.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamSubscriptionContextId - The stream expression context identifier to
retrieve.

Raised Exceptions:

• Exception

registerStreams(sessionTrack : SessionTrack, streamContexts :
List<StreamContext>) : List<String>

Register the stream with this service. The stream will be setup for stream expression
matching from future consumer's subscriptions.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamContexts - The stream contexts which contains all necessary fields and
attributes for defining the new streams.

Raised Exceptions:

• Exception

registerStreamContributor(sessionTrack : SessionTrack, streamId : String,
streamContexts : ChannelContext) : ChannelContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
142

Register a stream producer with this service. The stream will be setup for stream
expression matching from future consumer's subscriptions.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamId - The stream which the contributor is registering with.

• channelContext - The channel context which contains all necessary fields and
attributes for defining a channel to publish to a stream.

Raised Exceptions:

• Exception

registerStreamSubscriptions(sessionTrack : SessionTrack, streamSubscriptions :
List<ExpressionContext>) : List<String>

Register one or more stream expressions with the service, which will allow for the
associated endpoints to be pushed the data at the time of publication.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamSubscriptions - The subscriptions to perform stream matching to.

Raised Exceptions:

• Exception

resumeStreamSubscriptions(sessionTrack : SessionTrack, streamSubscriptionIds :
List<String>) : void

Resume certain stream subscriptions. Subscriptions must be in suspended state first,
otherwise resuming has no effect. Expressions will have to be re-brokered at the time of
being resumed.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamSubscriptionIds - The stream subscription identifiers for the stream
subscriptions to resume distribution of their matching streams to.

Raised Exceptions:

• Exception

suspendStreamSubscriptions(sessionTrack : SessionTrack, streamSubscriptionIds :
List<String>) : void

Suspend certain stream subscriptions, removing them from those being distributed the
streaming data until they are resumed.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
143

• sessionTrack - The pedigree of the invokers for this method.

• streamSubscriptionIds - The stream subscription identifiers for the stream
subscriptions to suspend.

Raised Exceptions:

• Exception

updateRegisteredStreams(sessionTrack : SessionTrack, streamContexts :
List<StreamContext>) : void

Update the registered stream with new context attributes and settings. Overrides any
existing stream definition, and causes a re-mapping of the brokered consumer list for
stream data dissemination. Stream's channel type and id must be the same, but all other
criteria are changeable.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• expressionIds - The stream contexts to update to these new definitions.

Raised Exceptions:

• Exception

Typical Use

This service is used to simplify the operations of stream management, as well as the intricacies
of the connection service, by providing a wrapper which does much of the work for the producer
and consumer in terms of stream registration being converted to a connection group definition, a
consumer and source being registered and added as members of that connection group based on
the stream expression or their stream Id. The main purpose of this service however, and why it
is typically used, is because it uses the ontological terms and language of streaming so that the
operations of the connection service can be much easier related to, and also specialized for
streaming functionality. The stream channel types allowed are information, frame, and byte.

As such, the Context containing this service's state may contain the Connection Service Bindings
and the mappings of the stream contributors and expressions to their matching streams.

Associated Diagrams

Class Diagrams

• CD 0000 Phoenix IM Services

StreamBrokeringServiceStub

This interface extends the Stream Brokering Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
144

(Inherited from the Stream Brokering Service)

StreamContext

The context of a stream contains the attributes and stream associated data, so it can be
registered, subscribed to, and matches for consumer membership determined based on its
contents. A Stream has a set of fixed metadata which are not to change throughout the life of
the stream. It has other attributes which are variable and allowed to change over its lifecycle;
these are the individual payloads of the stream.

Public Operations

getChannelType() : ChannelType

Get the channel type associated with the stream.
setChannelType(channelType : ChannelType) : void

Set the channel type associated with the stream.

Arguments:

• channelType - The channel type which all data in the stream must be formatted
into.

getPublisherMetadata() : Map<String, String>

Retrieve the metadata associated with all publishers tied to this Stream.
getPublisherContexts() : Map<String, BaseContext>

Retrieve the context associated with all publishers tied to this Stream.
getStreamId() : String

Get the stream id for the stream which is described by this context.
getStreamName() : String

Get the name of the stream for this stream context.
getStreamMetadata() : String

Get the stream metadata. This is what defines the stream, so that stream subscriptions
can be matched against it to determine the feed consumers for the stream.

getStreamHeaderDefinition() : String

Get the stream header definition. This is the outline of the stream header, and can be
used to define the bytes which are sent across as the header.

addPublisherMetadata(publisherId : String, publisherMetadata : String) : void

Add the publisher metadata to those associated with the stream.

Arguments:

• publisherId - The identifier for the publisher being added as a contributor to the
stream.

• publisherMetadata - The metadata associated with the publisher being added.

addPublisherContext(publisherId : String, publisherContext : BaseContext) : void

Add the publisher context to those associated with the stream.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
145

Arguments:

• publisherId - The identifier for the publisher.

• publisherContext - The context associated with the publisher being added.

setStreamId(streamId : String,) : void

Set the stream id for the stream associated with this context.

Arguments:

• streamId - The stream identifier.

setStreamName(streamName : String,) : void

Set the stream name for the stream associated with this context.

Arguments:

• streamName - The name of the stream associated with this context.

setStreamMetadata(streamMetadata : String,) : void

Set the stream metadata, which will be used to match stream subscriptions with stream
contexts, administrating stream membership.

Arguments:

• streamMetadata - The stream metadata.

setStreamHeaderDefinition(streamHeader : StreamHeader) : void

Set the stream header definition for the stream associated with this context.

Arguments:

• streamHeader - The stream header definition.

removePublisherMetadata(publisherId : String) : String

Remove the publisher metadata from the list of publisher metadata for the stream.

Arguments:

• publisherId - The publisher id whose metadta will be removed from the stream.

removePublisherContext(publisherId : String) : BaseContext

Remove the publisher context from the list of publisher contexts for the stream.

Arguments:

• publisherId - The publisher id whose context will be removed from the stream.

StreamHeaderAttribute<T>

An individual attribute of a stream header, this interface defines what an attribute is, and
outlines what it can consist of.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
146

Public Operations

getAttributeType() : <AttributeType>

Get the attribute type for this attribute.
setAttributeName(attributeValue : <T>) : void

Set the attribute name itself.

Arguments:

• attributeValue - The attribute to set as the new value.

getAttributeName() : String

Get the attribute name.
getAttributeDescription() : String

Get the description which explains the relevance, purpose, and other details about the
attribute.

setAttributeDescription(description : String) : void

Set the attribute description. For ease of use.

Arguments:

• description - The description of this attribute. Will replace any existing value.

getAttributeLength() : String

Get the length of this attribute. Assists in the definition of any protocol or header
definition which relies on this attribute.

setAttributeLength(length : int) : void

Set the length of this attribute. Assists in the definition of any protocol or header
definition which relies on this attribute.

Arguments:

• length - The length of the attribute. This is the length in regards to the number of
bytes of the attribute value.

setFixedLength(flag : boolean) : void

Set the flag which describes whether the attribute is fixed length or variable. If variable,
likely KLV, torrent, or other format should be used.

Arguments:

• flag - Whether the attribute is fixed length or not.

isFixedLength() : boolean

Get the flag which describes whether the attribute is fixed length or variable. If variable,
likely KLV, torrent, or other format should be used.

StreamHeader

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
147

The header for a stream. This is custom-implemented to the stream. The stream may have just a
base header, or may have a more extended, additional header for specific tags to be included in
the header which will be informative to the end-consumer or to the broker.

Public Operations

addHeaderAttribute(streamHeaderAttribute : StreamHeaderAttribute) : void

Add a header attribute for the stream header. The header attributes are in order of their
addition to the header, first to last.

Arguments:

• streamHeaderAttribute - The attribute to append to the header.

removeHeaderAttribute(streamHeaderAttribute : StreamHeaderAttribute) : boolean

Remove a specific header attribute from the header.

Arguments:

• streamHeaderAttribute - The header attribute to remove.

getHeaderAttributes() : List<StreamHeaderAttribute>

Get the complete list of attached stream header attributes. The order the are in the list is
the order they will be encoded into the header.

getHeaderFormatType() : HeaderFormatType>

The header format type. This describes the encoding for how to interpret the bytes of the
stream header.

StreamSubscriptionContext

The context for a stream subscription. Contains the expression associated with the subscription,
a subscription identifier, and a list of the consumers currently registered as data receivers for
this stream subscription. This is a server side structure meant to support easy cataloging of
stream-based expressions and their matching consumers, or, at least all of the consumers which
the Stream Brokering Service has ownership of. Stream expression matching is a little of a
different beast than information brokering. Information is brokered on an object by object basis,
however, a stream is brokered just once, and then all segments of the stream are assumed to
match the consumers which are already members of the stream.

Public Operations

addConsumerChannel(consumer : ChannelContext) : void

Add a consumer channel to receive the results of this stream subscription.

Arguments:

• consumer - The context describing the consumer channel to receive the results of
this stream subscription.

getExpression() : ExpressionContext

Get the context for the stream expression associated with this subscription.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
148

getSubscriptionId(streamHeaderAttribute : StreamHeaderAttribute) : String

Get the subscription id for this stream subscription context.
listConsumerChannels() : List<ChannelContext>

Retrieve the entire list of consumer channels bound to this stream subscription.
listRegisteredConsumers() : List<String>

List the registered consumers who are applicable to this stream subscription in a list of
strings.

setExpression(expressionContext : ExpressionContext) : void

Set the context for the stream expression associated with this stream subscription.

Arguments:

• expressionContext - The expression context.

setRegisteredConsumersList(consumerList : List<String>) : void

Set the list of consumers who are associated with this stream subscription.

Arguments:

• consumerList - The list of stream consumers.

setSubscriptionId(subscriptionId : String) : void

Set the subscription id for this context to reference.

Arguments:

• subscriptionId - The subscription id.

Stream Discovery

The streamdiscovery group contains the interfaces that define and support the stream discovery
and registration/query capability of the Phoenix architecture. The streamdiscovery interfaces are:

• StreamDiscoveryServiceConnector

• StreamDiscoveryServiceContext

• StreamDiscoveryService

• StreamDiscoveryServiceStub

• StreamDiscoveryContext

• StreamDiscoveryQueryContext

StreamDiscoveryServiceConnector

This interface extends the Stream Discovery Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
149

Public Operations

(Inherited from the Stream Discovery Service)

StreamDiscoveryServiceContext

Context for the Stream Discovery Service. This has all necessary methods for the serialization,
transport, and standup of the exact same Stream Discovery Service. It keeps a registry of
registered streams, as well as a set of expression processors for brokering stream queries.
Multiple expression processors are allowed and are chosen based on the query expression type.

Public Operations

addStreamDiscoveryContext(streamId : String, streamContext :
StreamDiscoveryContext) : void

Add a stream context to those held by this service.

Arguments:

• streamId - The identifier of the stream discovery context to add to our listings.

• streamContext - The context to add to our listings.

getStreamDiscoveryContexts() : List<StreamDiscoveryContext>

Get all of the stream discovery contexts held by this service.
getStreamDiscoveryContext(streamId : String) : StreamDiscoveryContext

Get a single stream discovery context held by this service.

Arguments:

• streamId - The stream id referencing the context to be retrieved.

removeStreamDiscoveryContext(streamId : String) : StreamDiscoveryContext

Remove the stream discovery context referenced by the passed parameter.

Arguments:

• streamId - The stream id referencing the context to be removed.

StreamDiscoveryService

The Stream Discovery Service interface extends the Base Channel Service interface and is
responsible for maintaining a registry of stream descriptions, along with relevant connection
meta-data so someone can find out how and where to connect to them. Stream Contexts may
include fields such as what specific data types a particular stream supports or where it is
physically located, as well as a name, description, and header data for a defined stream.

Public Operations

brokerForStreams(sessionTrack : SessionTrack, query :
StreamDiscoveryQueryContext) : List<StreamDiscoveryContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
150

Broker for a set of streams that satisfy the specified constraints. This method returns a
list of matching stream contexts which may be used to interact with their associated
streams through references internal to the context.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• query - The defined criteria used to broker for matching streams.

Raised Exceptions:

• Exception - If the given query causes an error to occur.

getStreamDiscoveryContext(sessionTrack : SessionTrack, streamId : String) :
StreamDiscoveryContext

Retrieve the context being used by the Stream to describe itself by requesting it using its
associated stream identifier.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamId - The identifier of the stream context to retrieve.

Raised Exceptions:

• Exception - If the values passed or current service state causes an error to occur.

deregisterStream(sessionTrack : SessionTrack, streamId : String) :
StreamDiscoveryContext

Deregister the stream from discovery operations.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamId - The identifier of the stream context to deregister.

Raised Exceptions:

• Exception - If the values passed or current service state causes an error to occur.

registerStream(sessionTrack : SessionTrack, streamContext :
StreamDiscoveryContext) : void

Register the stream from discovery operations.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamContext - The Context object containing the description of the service to be
registered.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
151

• Exception - If the values passed or current service state causes an error to occur.

updateStream(sessionTrack : SessionTrack, streamContext :
StreamDiscoveryContext) : void

Update the given stream discovery context by cross-referencing its Id with the existing
registry.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamContext - The Context object containing the description of the stream to be
updated.

Raised Exceptions:

• Exception - If the values passed or current service state causes an error to occur.

StreamDiscoveryServiceStub

This interface extends the Stream Discovery Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

(Inherited from the Stream Discovery Service)

StreamDiscoveryContext

Stream Discovery Context represents a Stream Definition (As a Stream Context), but is extended
to include service stubs related to the stream so that the stream can be joined at the point of its
entry into the SOA by any discovering it.

Public Operations

getStreamBrokeringServiceStub() : StreamBrokeringServiceStub

Get the stream brokering service stub associated with this stream.
setStreamBrokeringServiceStub(serviceStub : StreamBrokeringServiceStub) : void

Set the stream brokering service stub associated with this stream.

Arguments:

• serviceStub - The stream brokering service to whom is delegated the stream for
registration.

StreamDiscoveryQueryContext

A QueryContext used specifically for Stream Discovery operations. An extension of
QueryContext, and so is interchangeable in query methods, but is created here for extensions
later on.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
152

Public Operations

Stream Repository

The stream repository group contains the interfaces that provide the stream repository capability
for the Phoenix IM Services. The stream repository interfaces are:

• StreamQueryContext

• StreamQueryService

• StreamRepository

• StreamRepositoryService

• StreamRepositoryServiceConnector

• StreamRepositoryServiceContext

• StreamRepositoryServiceStub

• StreamSequenceContext

• StreamSequenceRange

StreamQueryContext

A context defining a stream query.

Public Operations

addStreamForQuery(streamId : String) : void

Add a stream for querying over to the list of those this query applies to.

Arguments:

• streamId - The stream identifier.

getStreamSequenceContext() : StreamSequenceContext

Get the stream sequence context of this stream query.
getStreamsForQuery() : List<String>

Get the streams for querying over. Returns the list of streams that this query applies to.
removeStreamForQuery(streamId : String) : void

Remove a stream for querying over from the list of those this query applies to.

Arguments:

• streamId - The stream identifier.

setStreamSequenceContext(context : StreamSequenceContext) : void

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
153

Set the stream sequence context of the stream query.

Arguments:

• context - The associated stream sequence context for this stream.

setStreamsForQuery(streamIds : List<String>) : void

Set the streams for querying over.

Arguments:

• streamIds - The stream identifiers.

StreamQueryService

This service extends the Base Channel Service interface and provides a retrieval capability for
persisted streams. This service permits actors to retrieve records from the underlying data store.
Using a Stream Query Context construct to describe the actual query to be executed allows the
architecture to mandate a small set of required query attributes while leaving the door wide open
for individual implementations of the IM Services to include additional attributes to tune the
query processing of each stream query service more towards their respective underlying data
stores. The query service will support synchronous and asynchronous query execution. For
synchronous queries the execute query method provided will return a value representing the
number of matching records found. This same method will return nothing when used
asynchronously. In all cases the result set of the query will be returned to the consumer via
channels.

Typical Use:

This service serves as a query interface for the Stream Repository Service.

Public Operations

cancelQuery(sessionTrack : SessionTrack, queryId : String) : boolean

Cancel a currently executing query. Executing queries are defined as queries that have
any processors cycles associated with them, i.e. a query is not done executing until all
results (if any) are delivered to the Dissemination Service for delivery. Returns True if the
query was canceled, False otherwise.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• queryId - The unique identifier for the query to be canceled.

Raised Exceptions:

• Exception

executeQuery(sessionTrack : SessionTrack, queryCtx : StreamQueryContext) : int

This method processes the specified query to satisfy some inquisitors request for data.
Actual result sets are delivered via a channel set up between the consumer and the query
service. When this method is invoked synchronously, the return value signals the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
154

inquisitor the number of matching records that were found or that an error occurred while
processing their query. A value of zero or greater is the number of matching records.
Values less than zero are reserved for possible error flags. When used asynchronously,
this method does not return a value. Returns a flag that signals the inquisitor the number
of matching records that were found or that an error occurred while processing their
query.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• queryCtx - The Stream Query Context object that describes what information the
inquisitor is searching for.

Raised Exceptions:

• Exception

getCounts(sessionTrack : SessionTrack, streamIds : List<String>) : Map<String,
Integer>

Retrieves the number of records in the repository for the specified streams. This method
returns a Map of key-value pairs that define how many records there are for each
specified stream. Returns the number of records in the repository for the specified types.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamIds - The listing of stream identifiers to retrieve the count(s) for.

Raised Exceptions:

• Exception

getMatchingSequences(sessionTrack : SessionTrack, streamId : String,
sequenceContext : StreamSequenceContext) : List<Long>

Retrieves the sequence ids of the matching items in the repository for the specified
streams. This method returns a list of longs which are a chronologically ordered list of the
sequence identifiers matching the passed query. Returns the sequence identifiers of the
records in the repository matching the passed query.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamId - The stream identifier to narrow the focus of the query.

• sequenceContext - The query to perform over the requested stream.

Raised Exceptions:

• Exception

listActiveQueryIds(sessionTrack : SessionTrack) : List<String>

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
155

List the unique identifiers for the currently executing queries. Executing queries are
defined as queries that have any processors cycles associated with them, i.e. a query is
not done executing until all results (if any) are delivered to the consumer or a proxy
service for delivery. Returns the list of unique identifiers for the currently executing
queries.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

Raised Exceptions:

• Exception

StreamRepository

An interface for stream repositories that will allow a single RepositoryService to support multiple
disparate stream repository implementation technologies.

Public Operations

addStreamSupport(streamContext : StreamContext) : void

Add the given stream to the list of supported streams for this repository.

Arguments:

• streamContext - The context describing the stream to be supported.

Raised Exceptions:

• Exception

cancelQuery(queryId : String) : boolean

Cancel the identified query. Returns True if canceled, False if not.

Arguments:

• queryId - The identifier for the query to be canceled.

Raised Exceptions:

• Exception

closeRepository() : void

Close the repository or its connection.

Raised Exceptions:

• Exception

delete(query : StreamQueryContext) : int

Delete all records that match the predicate provided in the given query context object.
Returns the number of information instances deleted from the repository.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
156

Arguments:

• query - The context that contains the query to be executed and whose matching
records will be deleted.

Raised Exceptions:

• Exception

deleteStream(streamId : String) : void

Delete a stream from the repository.

Arguments:

• streamId - The stream identifier.

Raised Exceptions:

• Exception

executeQuery(query : StreamQueryContext) : int

Execute a query against the stream repository. Returns the number of results found that
match the query, or -1 to indicate asynchronous query mode.

Arguments:

• query - The context that contains the query to be executed.

Raised Exceptions:

• Exception

getCount(streamId : String) : int

Retrieve the number of instances stored in the stream repository for the identified
stream. Returns a Map with stream id as keys and counts as values.

Arguments:

• streamId - The stream id to retrieve the count for.

Raised Exceptions:

• Exception

getMatchingSequences(streamId : String, sequenceContext : StreamSequenceContext)
: List<Long>

Retrieve the sequences for the given parameters. Returns the list of matching sequence
identifiers.

Arguments:

• streamId - The stream identifier.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
157

• sequenceContext - The context that defines what sequences to search for within
the stream.

Raised Exceptions:

• Exception

getUID() : String

Retrieve the unique identifier for the Stream Repository implementation.

Raised Exceptions:

• Exception

insert(insertionList : List<T>) : Object

Insert a set of streaming data into the stream repository. Returns an Object that
describes some result of the insert operation or null if nothing is returned.

Arguments:

• insertionList - The array of data to be inserted.

Raised Exceptions:

• Exception

isStreamSupported(streamId : String) : boolean

Check if the identified stream is supported by this repository. Returns True if this stream
is being supported by this repository, False otherwise.

Arguments:

• streamId - The stream identifier.

Raised Exceptions:

• Exception

listActiveQueryIds() : List<String>

List the identifiers for the set of currently active queries. An active query is defined as
any query that has processor cycles associated with it, i.e. a query is not finished
'executing' until all results have been delivered from the repository implementation to the
output buffer to the dissemination service. Returns the list of active query identifiers.

Raised Exceptions:

• Exception

openRepository() : void

Initialize the connection to the repository and make the class instance ready for use in all
respects.

Raised Exceptions:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
158

• Exception

removeStreamSupport(streamId : String) : void

Remove the identified stream from the list of streams supported by this repository.

Arguments:

• streamId - The stream identifier.

Raised Exceptions:

• Exception

StreamRepositoryService

The Stream Repository Service extends the Stream Query Service interface and inserts frames
into its associated data store(s). Although these interfaces are consistent with the general
repository service, some methods are not functional, as the stream repository service is based
on frames rather than information, which means that a) there is no type associated with the
data, although it is correlated with the type associated with the stream context, b) there are no
contexts for the frames, and c) frames are based around streams, which means that the
repository should have streams as representative of the types of data, encapsulating methods
which can retrieve the schema definitions for the stream, metadata content, and payload
content. There is no actual insert frames method defined as part of the service API. Instead, the
Repository Service receives frames via channels, which it reads internally, making insertion an
internal process. This decision was made to ensure the physical separation of control versus data
interactions. The frame storage interface is an extension of the frame retrieval interface. This
follows the assumption that if you can write to a section of disk then you are implicitly able to
read from that section as well, i.e. if you can write to the data store, you should be implicitly
able to read from the data store as well. This service also provides the ability to delete records
from the database. The Phoenix architecture defines two types of data stores: repositories and
archives. Repositories are low-latency high-access data stores that should support higher data
read and write rates. Archives are expected to be higher latency, low access data stores that
may not be able to support high data rates but can store much more data than repositories. A
possible implementation strategy would be to store recent data in a repository while aging data
would be moved to an archive. This service may be implemented in such a way that it can be
used as a wrapper for existing legacy data stores.

Public Operations

deleteRecords(sessionTrack : SessionTrack, queryStreamQueryContext :
StreamQueryContext) : int

Delete records that match the provided query. Any consumer channels defined for the
provided query are ignored. There are several possibilities that arise from using a
QueryContext for this operation: If a predicate and streams are both specified the
predicate is applied to only the specified streams and the matching records are deleted, If
a predicate is specified but streams are not the predicate is applied to all supported
streams and the matching records are deleted,If no predicate is provided but a set of
streams are specified all records of the specified streams are deleted, If neither a
predicate not a set of streams are specified nothing happens and an exception is thrown.
This is done because we specifically want to lock out the possibility of the default case
being to delete all records for all supported types.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
159

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• queryStreamQueryContext - The context that defines the subset of records to be
deleted.

Raised Exceptions:

• Exception

deleteStream(sessionTrack : SessionTrack, streamIdentifier : String) : void

This method will tell the service to permanently remove the data store for the identified
stream. This method should fail if the repository is currently storing data for the specified
stream (i.e. “end” method must be called first, before a “remove” call is executed).

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamIdentifier - The id of the stream to remove the resident data store for.

Raised Exceptions:

• Exception

isStreamSupported(sessionTrack : SessionTrack, streamIdentifier : String) :
boolean

This method will check if the service supports storing the identified stream. This is a
check to see if the stream has been registered with the repository via the
startStoringDataForStream method. This method returns true if the stream is supported
by this service, false if not.

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamIdentifier - The identifier of the stream to determine support for.

Raised Exceptions:

• Exception

startStreamSupport(sessionTrack : SessionTrack, streamContext : StreamContext) :
void

This method will register tell the service to begin storing streams of the identified type. If
the stream does not have a location (XML container, database table, etc) to store the
data in, one will be created. If a location already exists, that existing location will be
appended to. If the desired functionality is to create a new store for an already registered
stream, an actor should call the archive method, which will move the existing data store
contents to another location.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
160

• sessionTrack - The pedigree of the invokers for this method.

• streamContext - The context that describes the stream to begin storing.

Raised Exceptions:

• Exception

stopStreamSupport(sessionTrack : SessionTrack, streamIdentifier : String) : void

This method will tell the service to stop storing streams of the identified type. Any further
data for this stream that are received will be ignored (dropped out of memory at
processing time).

Arguments:

• sessionTrack - The pedigree of the invokers for this method.

• streamIdentifier - The identifier of the stream to stop storing data for.

Raised Exceptions:

• Exception

StreamRepositoryServiceConnector

This interface extends the Stream Repository Service interface, thereby exposing all of its
methods on the connector side of the Phoenix control channel.

Public Operations

(Inherited from the Stream Repository Service)

StreamRepositoryServiceContext

A context for the stream repository service.

Public Operations

getDefaultTableType() : mil.af.rl.phoenix.repository.TableType

Retrieve the flag defining the default type of persistence to perform when inserting data
into the underlying data store. Possible values are defined in the
Phoenix.Contexts.Services.EnumTypes.TableType enumeration.

getMaxRepositorySize() : long

Retrieve the theoretical maximum size for the data store that the associated parent
Repository Service is connected to. The actual unit of measure is left to the
implementation designers to determine.

getSpaceRemaining() : long

Retrieve the actual space remaining on the hard drive(s) that the underlying data store is
being hosted on.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
161

getSupportingStreamRepositories(streamId : String) : List<StreamRepository>

Retrieve the repositories supporting the identified stream. Returns the list of stream
repositories.

Arguments:

• streamId - The stream identifier.

Raised Exceptions:

• Exception

isStreamSupported(streamId : String) : boolean

Check if the identified stream is currently being supported. Returns True if the stream is
being supported, False otherwise.

Arguments:

• streamId - The stream identifier.

Raised Exceptions:

• Exception

startStreamSupport(streamContext : StreamContext) : StreamRepository

Start supporting the identified stream. Returns the stream repository that will be used to
support the stream.

Arguments:

• streamContext - The context describing the stream to begin supporting.

Raised Exceptions:

• Exception

stopStreamSupport(streamId : String) : void

Stop supporting the identified stream.

Arguments:

• streamId - The stream identifier.

Raised Exceptions:

• Exception

StreamRepositoryServiceStub

This interface extends the Stream Repository Service, thereby inheriting and exposing all of its
methods on the stub side of the Phoenix control channel.

Public Operations

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
162

(Inherited from the Stream Repository Service)

StreamSequenceContext

Class description.

Public Operations

getStreamSegmentQueryRange() : StreamSequenceRange

Get the stream segment query range for the query to search by using the required
sequence id component. Returns the stream segment query range.

isSequenceRangeDefined() : boolean

Check if the sequence range is defined or not. Retrurns True if the sequence range is
constrained.

setFrameQueryRange(streamQueryRange : StreamSequenceRange) : void

Set the stream segment query range for the query to search. Constrains the range for
bounding.

Arguments:

• streamQueryRange - The stream query range.

StreamSequenceRange

Defines the sequenceId range for a stream segment query.

Public Operations

getEndRangeSequenceIdentifier() : long

Get the sequence id to end the stream query over. Returns the sequence id to stop
processing query.

getStartRangeSequenceIdentifier() : long

Get the sequence id to begin the stream query over. Returns the sequence id to begin
query.

isRangeEndDefined() : boolean

The end range may be undefined, in which case the query should be over all specified
streams beginning at the start range, if defined. Returns True or false, is the query
constrained by a sequence id end to the range.

isRangeStartDefined() : boolean

The start range may be undefined, in which case the query should be over all specified
streams until the end range, if defined. Returns True or false, is the query constrained by
a sequence id start of the range.

setEndRangeSequenceIdentifier(sequenceId : long) : void

Set the sequence id to end the stream query over.

Arguments:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
163

• sequenceId - Sequence id to stop processing query.

setStartRangeSequenceIdentifier(sequenceId : long) : void

Set the sequence id to begin the stream query over.

Arguments:

• sequenceId - Sequence id to begin query.

Reference

Terms
The table below gives a brief description of important terms used in this document.

Term Meaning

Actor A generic entity that utilizes an IM Service in some capacity. There are several
identified types of actors: consumers, producers, and inquisitors. An actor may
represent either a service or a user of a service.

Archive Archives are expected to be higher latency, low access data stores that may not
be able to support high data rates but can store much more data than
repositories.

Client An actor that is an application, system, or service that accesses another service.

Consumer An actor that receives information.

Distributed Deals with hardware and software systems containing more than one processing
element or storage element, concurrent processes, or multiple programs, running
under a loosely or tightly controlled regime.

Endpoint In Service-oriented architecture, an endpoint is the entry point to a service, a
process, or a queue or topic destination. The abilty to detect one or more Point of
Presence/Entry/Connection to the information management system.

Information The basic building block of data containing a minimum set of data including an
information type identifier, a payload, and metadata. Information may contain
other data in addition to the specified minimal set.

Information
Architecture

The structural design of shared information environments (from Information
Architecture for the World Wide Web: Designing Large-Scale Web Sites by Peter
Morville and Louis Rosenfeld).

Information An established category of information, the descriptor for which contains,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
164

Type minimally, a description of the payload and metadata structures and a unique
identifier.

Inquisitor A type of consumer that queries a service to retrieve information.

Metadata A structured set of data that describes an instance of information. Is sometimes
called Metainformation and is "data about data", of any sort in any media. An item
of metadata may describe an individual datum, or content item, or a collection of
data including multiple content items. Metadata is used to facilitate the
understanding, characteristics, and management usage of data.

Payload The actual unmodified data of interest.

Expression A verb phrase template that describes a property of objects, or a relationship
among objects represented by the variables.

Producer An actor that submits information to a service.

Schema A conception of what is common to all members of a class; a general or essential
type or form. (New Oxford American Dictionary)

Service A mechanism to enable access to one or more capabilities, where the access is
provided using a prescribed interface and is exercised consistent with constraints
and policies as specified by the service description (Organization for the
Advancement of Structured Information Standards).

Acronyms
Acronym Definition

AFRL Air Force Research Laboratory

ATO Air Tasking Order

C2 Command and Control

COI Community of Interest

CoT Cursor-on-Target

DoD Department of Defense

FORCH Filter Orchestration

FOS Filter Orchestration Service

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
165

GIG Global Information Grid

IM Information Management

IMS Information Management Service(s)

IP Internet Protocol

JBI Joint Battlespace Infosphere

QoS Quality of Service

RMI Remote Method Invocation

SAB Scientific Advisory Board

SOA Service-Oriented Architecture

TCP Transmission Control Protocol

UDP User Datagram Protocol

UML Unified Modeling Language

URI Uniform Resource Identifier

XML Extensible Markup Language

XPath XML Path Language

XSD XML Schema Document

Interface Hierarchies
This section shows the parent and child relationships for each of the components of the Phoenix
architecture that are specified in Section 3. For example, all of the service interfaces defined in
Section 3.2 are extensions (children) of the BaseService interface, some directly, and some as
children of children. In Section 3 all interfaces within the Phoenix architecture are presented in
alphabetical order while in this section only those interfaces that are part of a parent-child
hierarchy are shown.

BaseContext
----ActionContext
----ActorContext
----AuthorizationContext
----ChannelContext
--------InformationChannelContext
--------InputChannelContext

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
166

----ConnectionContext
--------ConnectorContext
--------StubContext
----EndPointContext
----EventContext
----EventDescriptorContext
----EventNotificationRequestContext
----ExpressionContext
----FilterContext
----FilterChainContext
----InformationContext
----InformationQueryContext
----InformationTypeContext
----ProtocolContext
--------TransportProtocolContext
----ServiceBrokeringQueryContext
----ServiceContext
--------ClientRuntimeServiceContext
--------ConnectionServiceContext
--------InformationServiceContext
------------DisseminationServiceContext
------------EventNotificationServiceContext
------------InformationBrokeringServiceContext
------------QueryServiceContext
----------------RepositoryServiceContext
------------SubmissionServiceContext
--------ServiceBrokeringServiceContext
--------SessionManagementServiceContext
--------StreamBrokeringServiceContext
--------StreamDiscoveryServiceContext
--------SubscriptionServiceContext
----SessionContext
----SubscriptionContext

ContextContainer
----BaseChannel
----BaseService
----BaseServiceConnector
----BaseServiceStub
----Event
----Filter
----FilterChain
----Information

BaseChannel
----InputChannel
--------ByteInputChannel
--------EventInputChannel
--------FrameInputChannel
--------InformationInputChannel*
----OutputChannel
--------ByteOutputChannel
--------EventOutputChannel
--------FrameOutputChannel
--------InformationOutputChannel*

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
167

* Dual Inheritance

InformationChannel
----InformationInputChannel*
----InformationOutputChannel*

* Dual Inheritance

BaseService
----BasePersistentService
----BaseChannelService
--------AuthorizationService
--------ClientRuntimeService
--------ConnectionService
--------DisseminationService
--------EventNotificationService
--------FilterManagementService
--------InformationBrokeringService
--------InformationDiscoveryService
--------InformationTypeManagementService
--------QueryService
------------RepositoryService
--------ServiceBrokeringService
--------SessionManagementService
--------StreamBrokeringService
--------StreamDiscoveryService
--------SubmissionService
--------SubscriptionService

BaseServiceConnector
----BaseChannelServiceConnector
--------AuthorizationServiceConnector
--------ClientRuntimeServiceConnector
--------ConnectionServiceConnector
--------DisseminationServiceConnector
--------EventNotificationServiceConnector
--------FilterManagementServiceConnector
--------InformationBrokeringServiceConnector
--------InformationDiscoveryServiceConnector
--------InformationTypeManagementServiceConnector
--------QueryServiceConnector
--------RepositoryServiceConnector
--------ServiceBrokeringServiceConnector
--------SessionManagementServiceConnector
--------StreamBrokeringServiceConnector
--------StreamDiscoveryServiceConnector
--------SubmissionServiceConnector
--------SubscriptionServiceConnector

BaseServiceStub
----BaseChannelServiceStub
--------AuthorizationServiceStub
--------ClientRuntimeServiceStub
--------ConnectionServiceStub

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
168

--------DisseminationServiceStub
--------EventNotificationServiceStub
--------FilterManagementServiceStub
--------InformationBrokeringServiceStub
--------InformationDiscoveryServiceStub
--------InformationTypeManagementServiceStub
--------QueryServiceStub
--------RepositoryServiceStub
--------ServiceBrokeringServiceStub
--------SessionManagementServiceStub
--------StreamBrokeringServiceStub
--------StreamDiscoveryServiceStub
--------SubmissionServiceStub
--------SubscriptionServiceStub

Event
----ExceptionEvent
----InformationEvent
--------InformationDeliveryEvent
----InformationTypeEvent

Package Structure
This section depicts the package structure for the Phoenix architecture. Each package listed here
corresponds to a similarly named section within the architecture specification section of this
document where the interfaces and classes that comprise these packages are listed and
described in detail.

mil
---- af
-------- rl
------------ phoenix
---------------- channel
---------------- client
---------------- connection
---------------- core
---------------- dissemination
---------------- event
---------------- eventnotification
---------------- expression
---------------- filter
---------------- frame
---------------- information
---------------- informationbrokering
---------------- informationdiscovery
---------------- informationtype
---------------- query
---------------- repository
---------------- security
---------------- servicebrokering
---------------- session
---------------- sessionmanagement
---------------- stream
---------------- streambrokering

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
169

---------------- streamdiscovery
---------------- submission
---------------- subscription

How To...

How To...Submit Information
Required Phoenix IM Services :

• SubmissionService

Optional Phoenix IM Services :

• InformationTypeManagementService - may be used by the producer or
SubmissionService to verify that an information type exists or to validate instances of
information.

• ServiceBrokeringService - may be used by the producer and/or the SubmissionService to
obtain control stubs for other Phoenix IM services.

Workflow

1. The producer obtains a control stub instance for the SubmissionService.
- This stub can be provided by a runtime library or brokered for via the
ServiceBrokeringService.

/* This example assumes an implementation-specific control stub is provided
by a runtime library. */
SubmissionServiceStub serviceStub = new MySubmissionServiceStubImpl();

2. The consumer must first activate and connect the stub to its associated service before it
can be utilized.
- This is done by calling the "activate()" and "connect()" methods on the stub. Activating
a stub initializes its state within the local address space of the consumer. Connecting the
stub to the service establishes the control channel between the consumer and the
InformationBrokeringService.

/* activate the control stub. */
serviceStub.activate(false);

/* Connect the stub to its associated service. This example assumes the
absence of any SessionManagementService from the collection of Phoenix IM
services being utilized. */
serviceStub.connect(null);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
170

3. Create the Channel Context that describes the channel being requisitioned by the
producer.
- This context may be contain specific configuration settings or a subset. If a subset then
the rest of the channel settings will be determined by the service.

/* Create a Channel Context that will describe the Output Channel to be
created. */
ChannelContext channelContext = new MyChannelContext();

// Set the location of the Submission Service the channel will connect to.
EndPointContext endPointContext = new MyEndPointContext();

endPointContext.setHostAddress(155.244.60.54);

endPointContext.setHostPort(1234);

channelContext.setEndPointContext(endPointContext);

TransportProtocolContext transportContext = new
MyTransportProtocolContext();
transportContext.setProtocolId("tcp");

ProtocolContext applicationContext = new MyProtocolContext();
applicationContext.setProtocolId("information");

channelContext.setApplicationProtocolContext(applicationContext);
channelContext.setTransportProtocolContext(transportContext);

4. Create an instance of an OutputChannel for the selected SubmissionService.
- The OutputChannel created can be a ByteOutputChannel, InformationOutputChannel, or
an implementation-specific OutputChannel. OutputChannels are created by the actor
connecting to the SubmissionService.

/* Request that the Submission Service double check the output channel
context to insure that the created channel will match one of the service's
available input channels. */
channelContext =
serviceStub.configureActorOutputChannelContext(channelContext);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
171

/* End of Channel Context configuration. */

/* Some implementation-specific mechanism then creates the channel from the
channel context. In the case of this example a channel factory exists for
this purpose. */
InformationOutputChannel ioc = (InformationOutputChannel)
ChannelFactoryImpl.createOutputChannel(null, channelContext);

5. Connect the OutputChannel to the SubmissionService.
- This is done by calling the "connect()" method on the created OutputChannel. This
operation will connect the OutputChannel to a corresponding SubmissionService
InputChannel. the connect method takes a Session Track object as a parameter. This
example assumes we have such an object already created and populated.

/* Connect the Output Channel to the Submission Service's Input Channel. */
ioc.connect(mySessionTrack);

6. Write information to the OutputChannel.
- This is done by calling one of the "write()" methods provided by the OutputChannel.
This method invocation realizes the concept of submitting information. If using a
ByteOutputChannel or an implementation-specific channel, either the SubmissionService
or a channel filter is responsible for converting the received data to Phoenix's defined
notion of information, if conversion is required.

/* This example assumes you have one or more instances of Information ready
to be submitted. */
Information information = new MyInformation();

List<Information> informationList= new ArrayList<Information>();
informationList.add(information);

/* Submit information by invoking one of the write methods on the Output
Channel. */
/* Option 1: Synchronous singular write. */

ioc.write(information);

/* Option 2: Synchronous multiple write. */
ioc.write(informationList);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
172

/* Option 1: Asynchronous singular write. */
ioc.writeAsync(information);

How To...Subscribe to Information
Required Phoenix IM Services :

• DisseminationService

• InformationBrokeringService

• SubscriptionService

• SubmissionService

Optional Phoenix IM Services :

• InformationTypeManagementService - may be used by the consumer or the required
services to verify that an information type exists or to validate instances of information.

• ServiceBrokeringService - may be used by the consumer and/or the required services to
obtain control stubs for other Phoenix IM services.

• SessionManagementService - can be used to create actor sessions for use when invoking
methods on the Phoenix IM service interfaces. Alternately, a service's implementation
could accept a null value for actor sessions.

Workflow

1. The consumer obtains a control stub instance for the Subscription Service.
- This binding can be provided by a runtime library or brokered for via the Service
Brokering Service.

/* This example assumes an implementation-specific control stub is provided
by a runtime library using static configuration. */
SubscriptionServiceStub serviceStub = new MySubscriptionServiceStub();

2. The consumer must first activate and connect the stub to its associated service before it
can be utilized.
- This is done by calling the "activate()" and "connect()" methods on the stub. Activating
a stub initializes its state within the local address space of the consumer. Connecting the
stub to the service establishes the control channel between the consumer and the
Subscription Service.

/* activate the control stub. */
serviceStub.activate(false);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
173

/* Connect the stub to its associated service. This example assumes the
absence of any Session Management Service from the collection of Phoenix IM
services being utilized, hence the 'null' session track parameter. */
serviceStub.connect(null);

3. Create the Channel Context that describes the channel to be used for delivering matching
information.
- This context may be contain specific configuration settings or a subset. If a subset then
the rest of the channel settings will be determined by the service.

/* Create a Channel Context that will describe the Input Channel to be
created. */
ChannelContext channelContext = new MyChannelContext();

// Set the location of the channel that the Dissemination Service will
connect to.
EndPointContext endPointContext = new MyEndPointContext();

endPointContext.setHostAddress(155.244.60.69);

endPointContext.setHostPort(9786);

channelContext.setEndPointContext(endPointContext);

TransportProtocolContext transportContext = new
MyTransportProtocolContext();
transportContext.setProtocolId("tcp");

ProtocolContext applicationContext = new MyProtocolContext();
applicationContext.setProtocolId("information");

channelContext.setApplicationProtocolContext(applicationContext);
channelContext.setTransportProtocolContext(transportContext);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
174

4. Setup the InformationInputChannel for receiving results.
- This context may be contain specific configuration settings or a subset. If a subset then
the rest of the channel settings will be determined by the service.

/* Some implementation-specific mechanism creates the channel from the
channel context. In this example we use an implementation-specific channel
factory. */
InformationInputChannel ioc = (InformationInputChannel)
ChannelFactoryImpl.createInputChannel(null, channelContext);

/* Instruct the Input Channel to listen for connection attempts from Output
Channels. This example assumes no Session Management Service, hence the
'null' session track parameter. */
iic.open(null);

5. Construct and populate the Context describing the subscription to be registered.
- Subscriptions are registered through the use of SubscriptionContext instances.

/* Create a new SubscriptionContext and populate it with the required and
any optional attributes. */
SubscriptionContext subscriptionToBeRegistered = new
MySubscriptionContext();

/* (REQUIRED) Create and set the expression for the subscription. */
ExpressionContext expressionContext = new ExpressionContext();

expressionContext.setExpression("/us/af/aircraft[@tailNo='VIXEN03']");
expressionContext.setExpressionType("XPath");

subscriptionToBeRegistered.setExpression(expressionContext);

/* (REQUIRED) Set the EndPointContext for the consumer (at least one) of
the brokered information that matches this subscription. In this example we
add the context that describes the previously created input channel. */
subscriptionToBeRegistered.addConsumerChannel(channelContext);

/* (REQUIRED) Set the brokering result type. Either the registrant for this
subscription wishes to have information that matches the subscription test
forwarded to the associated consumers via some Phoenix Dissemination

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
175

Service or the registrant wishes to have consumer hit lists for brokered
information forwarded to the associated consumers via some Phoenix Event
Notification Service. */
subscriptionToBeRegistered.setBrokeringResultType(BrokeringResultType.INFOR
MATION);

/* (OPTIONAL) Set the time, in ms, for that the consumer(s) are willing to
wait for the first result that matches this subscription. If this time
expires without a match being found, the subscription will automatically be
unregistered. */
subscriptionToBeRegistered.setFirstMatchFoundTime(60000);

/* (OPTIONAL) Set one or more information type identifiers for the
information types that this subscription should be applied to. If not set,
the subscription will be applied to all types known to the registering
InformationBrokeringService(s). */
subscriptionToBeRegistered.addInformationTypeName("mil.af.aircraft");

6. Register the subscription with the Subscription Service.
- The consumer then registers the subscription by submitting it to the Subscription
Service.

/* Submit the subscription for registration by providing its Context object
to the Subscription Service. This example assumes the absence of any
Session Management Service from the collection of Phoenix IM services being
utilized. */
List<SubscriptionContext> subscriptionList = new
LinkedList<SubscriptionContext>();

subscriptionList.add(subscriptionToBeRegistered);

serviceStub.registerExpressions(null, subscriptionList);

7. Use the previously created input channel to read information that matched the registered
subscription.
- This may be done using any of the synchronous or asynchronous read methods from
the input channel interface.

/* Invoke one of the read methods from the Input Channel interface or the
specific channel interface. */
/* Option 1: The asynchronous read from the input channel interface. */

iic.readAsync(new InputHandler<Information>());

/* Option 2: The singular, synchronous blocking read from the information
input channel interface. */

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
176

Information information = iic.read();

/* Option 3: The multiple, synchronous blocking read from the information
input channel interface. This example will read 5 information instances are
return them all at once in a List construct. */
List<Information> informationList = iic.read(5);

How To...Store Information
Required Phoenix IM Services :

• Repository Service

• Submission Service

Optional Phoenix IM Services :

• InformationTypeManagementService - may be used by the producer or required services
to verify that an information type exists or to validate instances of information.

• ServiceBrokeringService - may be used by the producer and/or the required services to
obtain bindings for other Phoenix IM services.

Workflow 1 : Submission Service is Configured to Store all Submitted Information

1. The information producer submits information.
- This is accomplished per the instructions given in the How To...Submit Information
section.

2. The Submission Service forwards the Information to the Repository Service.
- This is accomplished via the internal information channels the services established
between themselves. For more details, please see Sequence Diagram 0008 Information
Storage (Persistence).

Workflow 2 : Producer Flags Individual Information Instances for Storage

1. The producer flags an information instance for storage.
- This is done by setting the corresponding flag within the InformationContext that
describes the instance of information. This is not required and, based on the
implementation, may or may not impact whether or not this information instance is
stored in a repository.

/* This example assumes you have one or more instances of Information ready
to be submitted. */
Information information = new MyInformation();

/* Retrieve the Information Context for the information instance to be
stored. */

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
177

InformationContext informationContext =
information.getInformationContext();

/* Set the presistence flag on the Context. This example assumes that the
value '1' tells the Submission Service to forward this Information instance
for storage. */
informationContext.setPersistenceFlag(1);

/* Set the Context for the instance of information. */
information.setContext(informationContext);

2. The information producer submits information.
- This is accomplished per the instructions given in the How To...Submit Information
section. For this workflow the Information instance referenced in the information
submission workflow and the information instance constructed above and flagged for
storage are one and the same.

3. The Submission Service forwards the information instance to the Repository Service.
- This is accomplished via the internal information channels the services established
between themselves. For more details, please see Sequence Diagram 0008 Information
Storage (Persistence). The logic to determine whether or not to store an information
instance may or may not utilize the aforementioned persistence flag from the Information
Context.

How To...Query for Information
Required Phoenix IM Services :

• Query Service

Optional Phoenix IM Services :

• InformationTypeManagementService - may be used by the inquisitor or the Query
Service to verify that an information type exists or to validate retrieved instances of
information.

• ServiceBrokeringService - may be used by the inquisitor and/or the Query Service to
obtain control stubs for other Phoenix IM services.

• SessionManagementService - can be used to create actor sessions for use when invoking
methods on the Phoenix IM service interfaces. Alternately, a service's implementation
could accept a null value for actor sessions.

Workflow

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
178

1. The inquisitor obtains a control stub instance for the Query Service.
- This binding can be provided by a runtime library or brokered for via the
ServiceBrokeringService.

/* This example assumes an implementation-specific control stub is provided
by a runtime library. */
QueryServiceStub controlStub = (QueryServiceStub)
serviceBinding.getControlStub();

2. The inquisitor must first activate and connect the stub to its associated service before it
can be utilized.
- This is done by calling the "activate()" and "connect()" methods on the stub. Activating
a stub initializes its state within the local address space of the inquisitor. Connecting the
stub to the service establishes the control channel between the inquisitor and the Query
Service.

/* activate the control stub. */
controlStub.activate(false);

/* Connect the stub to its associated service. This example assumes the
absence of any SessionManagementService from the collection of Phoenix IM
services being utilized. */
controlStub.connect(null);

3. Create the Channel Context that describes the channel being requisitioned by the
inquisitor.
- This context may be contain specific configuration settings or a subset. If a subset then
the rest of the channel settings will be determined by the service.

/* Create a Channel Context that will describe the Input Channel to be
created. */
ChannelContext channelContext = new MyChannelContext();

// Set the location of the actor channel that the Dissemination Service
will connect to.
EndPointContext endPointContext = new MyEndPointContext();

endPointContext.setHostAddress(155.244.60.54);

endPointContext.setHostPort(4567);

channelContext.setEndPointContext(endPointContext);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
179

TransportProtocolContext transportContext = new
MyTransportProtocolContext();
transportContext.setProtocolId("tcp");

ProtocolContext applicationContext = new MyProtocolContext();
applicationContext.setProtocolId("information");

channelContext.setApplicationProtocolContext(applicationContext);
channelContext.setTransportProtocolContext(transportContext);

4. Setup the Information Input Channel for receiving results.
- The Input Channel will be used to receive the results of the submitted query. The Query
Service is responsible for interfacing with one or more Dissemination Services to create
the associated Output Channel.

/* End of Channel Context configuration. */

/* Some implementation-specific mechanism then creates the channel from the
channel context. */
InformationInputChannel ioc = (InformationInputChannel)
ChannelFactoryImpl.createInputChannel(null, channelContext);

/* Instruct the Input Channel to listen for connection attempts from Output
Channels. */
iic.accept();

5. Construct the query to be submitted.
- This is done via the InformationQueryContext interface.

/* Create and populate a new InformationQueryContext instance. */
InformationQueryContext queryToSubmit = new InformationQueryContext();

/* (REQUIRED) Create and set the expression for the query. */
ExpressionContext expressionContext = new ExpressionContext();

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
180

expressionContext.setExpression("/us/af/aircraft[@tailNo='VIXEN03']");
expressionContext.setExpressionType("XPath");

/* (REQUIRED) Add the expression test to the query. */
queryToSubmit.addExpression(expressionContext);

/* (REQUIRED) Add a ChannelContext that describes the consumer channel. */
queryToSubmit.addConsumerChannel(channelContext);

/* (OPTIONAL) Set the time, in ms, the inquisitor is willing to wait for
the submitted query to returns its first result. */
queryToSubmit.setFirstResultReturnedTime(60000);

/* (OPTIONAL) Set the time, in ms, the inquisitor is willing to wait for
the entire result set for the submitted query. */
queryToSubmit.setAllResultsReturnedTime(300000);

/* (OPTIONAL) Set one or more information types, by identifier, for this
query to be executed against */
queryToSubmit.addInformationTypeName("mil.af.aircraft");

/* (OPTIONAL) Set the execution mode flag to notify the Query Service of
whether or not to return the result set size before sending any results
over the information channel. This example assumes that the value '1'
requires that the Query Service return the result set size. */
queryToSubmit.setExecutionModeFlag(1);

6. Submit the query for execution.
- This is done by invoking the "executeQuery()" method on the Query Service. The Query
Service will setup the Output Channel for delivering results, execute the query against
the data store(s), and return the result set size, if required.

/* Submit the query for execution. This example assumes the absence of any
SessionManagementService from the collection of Phoenix IM services being
utilized. */
int resultSetSize = controlStub.executeQuery(null, queryToSubmit);

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
181

7. The Query Service will connect to the Inquisitor's Input Channel.
- The Query Service creates an Output Channel and connects it to the Inquisitor's
listening Input Channel. Then the Inquisitor will listen for information being written to the
channel. This information is the submitted query's result set.

/* Read the result set through the input channel. */
iic.readAsync(new InputHandler<Information>());

8. The Query Service delivers the result set, then the inquisitor and the Query Service
disconnect and destroy the Information Channel between themselves.

/* The Inquisitor should destroy its Input Channel once the result set has
been received. */
iic.close(null);

